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Abstract 

Validating the safety of Highly Automated Vehicles (HAVs) is 
a significant autonomy challenge. HAV safety validation 
strategies based solely on brute force on-road testing campaigns 
are unlikely to be viable. While simulations and exercising edge 
case scenarios can help reduce validation cost, those techniques 
alone are unlikely to provide a sufficient level of assurance for 
full-scale deployment without adopting a more nuanced view 
of validation data collection and safety analysis. Validation 
approaches can be improved by using higher fidelity testing to 
explicitly validate the assumptions and simplifications of lower 
fidelity testing rather than just obtaining sampled replication of 
lower fidelity results. Disentangling multiple testing goals can 
help by separating validation processes for requirements, 
environmental model sufficiency, autonomy correctness, 
autonomy robustness, and test scenario sufficiency. For 
autonomy approaches with implicit designs and requirements, 
such as machine learning training data sets, establishing 
observability points in the architecture can help ensure that 
vehicles pass the right tests for the right reason. These 
principles could improve both efficiency and effectiveness for 
demonstrating HAV safety as part of a phased validation plan 
that includes both a “driver test” and lifecycle monitoring as 
well as explicitly managing validation uncertainty.  

Introduction 

Wide-scale deployment of Highly Automated Vehicles (HAVs) 
seems imminent despite facing significant interdisciplinary 
challenges. [1] At this time, there is no generally agreed upon 
technical strategy for validating the safety of the non-
conventional software aspects of these vehicles. Given 
NHTSA’s “non-regulatory approach to automated vehicle 
technology safety” [2], it seems that many HAVs will be 
deployed as soon as development teams think their vehicles are 
ready – and then they will see how things work out on public 
roads. Even if pilot deployments yield acceptably low mishap 
rates, there is still the question of whether a limited scale 
deployment will accurately forecast the safety of much larger 
scale deployments and accompanying future software updates. 

It is common to see statements to the effect that accumulating 
on-road miles will validate HAV system safety, especially in 
the context of attempting to characterize progress of 
development efforts. (E.g., [3], although this does not 

necessarily represent the actual safety approach of the company 
discussed.) More comprehensive discussions of the topic still 
tend to heavily emphasize the role of testing, even if other forms 
of validation are mentioned. (E.g., [4][5].) However, even with 
closed courses and high-fidelity simulation, there are limits to 
the amount of vehicle-level testing that can be done before 
deployment. 

The scope of this paper is validation required beyond ISO 
26262 compliance, with an emphasis on SAE Level 4 
autonomy. Level 4 HAVs are only required to operate 
autonomously within a defined Operational Design Domain 
(ODD), which defines the specific conditions under which the 
system is intended to function. [2][6]  

A safety validation approach for HAV autonomy that goes 
beyond mileage accumulation is highly desirable. Preferably, it 
should also be based on a falsification approach that includes 
concrete, testable safety goals and requirements. [7] This paper 
proposes a number of ways to improve HAV validation 
efficiency, increase effectiveness, and lead to a more defensible 
safety argument. A layered series of validation steps can help 
support a conclusion that an HAV system is acceptably safe, 
even in the absence of a completely specified set of traditional 
functional requirements for autonomy functions. 

Approach 

We believe that HAV validation efforts can be significantly 
strengthened by applying the following ideas: 

1. Disentangle the disparate goals of testing by separately 
managing requirements validation and design validation. 

2. Use higher-fidelity simulation and tests to reduce residual 
risks due to assumptions and gaps in lower fidelity 
simulations and tests. 

3. Provide observability in the HAV architecture to ensure 
that tests are passed for the right reasons. 

4. Explicitly manage uncertainty within the safety argument. 

Although these ideas are based on existing practices in some 
domains, the novelty of HAV technology and the pace at which 
HAVs are being commercialized motivates a clear, unified 
description of how these ideas can be applied to manage and 
reduce the risk of aggressive HAV deployment. 
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Terminology 

Our terminology is generally compatible with ISO 26262. [8] 
The following terms are defined particularly relevant:  

Risk: a combined measure of the probability and consequence 
of a mishap that could result in a loss event. 

Safety: absence of unreasonable risk of a mishap resulting in a 
loss event. Level 4 HAV loss events can include fatalities 
potentially attributable to HAV design defects or operational 
faults. For initial HAV deployment, evaluation of what might 
constitute a “reasonable risk” will be influenced by public 
policy decisions.  

Safety Validation: demonstrating that system-level safety 
requirements (safety goals) are sufficient to assure an 
acceptable level of safety and have been achieved. 

Safety Argument (Safety Case): a written argument and 
evidence supporting safety validation. 

Machine Learning (ML): an approach using inductive learning 
for system design, in which a run-time system uses the results 
of a learning process to perform algorithmic operations (e.g., 
running a deep convolutional neural network having 
precomputed weights). This paper assumes weights are fixed 
before validation. Validating dynamically adaptive ML systems 
that modify weights or otherwise learn at run-time is beyond the 
scope of this paper. 

The Role of Vehicle Test and Simulation 

Before describing proposed validation strategies, it is helpful to 
review typical uses of testing and simulation in current HAV 
safety assessment approaches. 

Beyond ISO 26262 

Dealing with many potential design and implementation defects 
can, and should, be done via use of an established safety 
standard such as ISO 26262. [8] For areas in which even a 
perfectly working system might not provide completely safe 
functionality, an emerging standard covering Safety of the 
Intended Functionality (SOTIF) might be used. [9] A SOTIF 
standard might provide a way to deal with functions with 
statistically valid functionality, such as radar-based obstacle 
detection functions. Other issues specific to ML-based systems 
must also be addressed, as discussed in [10]. Overall, the 
problem with validating according to a V model as is typical in 
functional safety approaches is that ML system functionality 
can be opaque to humans. [11] This makes traceability 
problematic to the degree that humans performing traceability 
analysis can’t analyze design artifacts. [12]  

Rather than attempt a design-to-test traceability approach 
according to the V model, we instead explore what can be done 

with a test-centric approach to areas beyond the obvious scope 
of practical application of ISO 26262 and SOTIF standards 
which are not designed for ML validation. 

System Test/Debug/Patch as a Baseline Strategy 

Historically, on-road testing has been emphasized in 
prototyping autonomous vehicles. (E.g., [13][14][15][16][17].) 
The field of robotics relies heavily on “real-world” testing in 
order to gain an understanding of what features robots need. 
However, as vehicles transition from prototype to production, 
the approach to validation must become more comprehensive. 

Basing an HAV safety argument solely on accumulating road 
miles is an impractical way to validate safety. Such a brute force 
approach takes a huge number of miles to make a credible 
statistical argument. [18] Beyond that, the validity of 
accumulated road testing evidence is potentially undermined 
with each software change, whether it be an update to training 
data, the addition of new behaviors, or just a security patch.  

As a practical matter, what happens if, after billions of miles of 
road testing and simulation, the data shows that an HAV is not 
living up to its hoped-for safety goal? Will the development 
team (or should they) do another billion miles of road testing 
after fixing any observed defects? Or will the team just patch 
the readily reproducible bugs, test for a few miles, and declare 
victory, moving on to deployment? And how will the realities 
of the intense pressure from the race to market influence a 
team’s interpretation of results and approach to validation? 

Essentially all other industries base functional safety validation 
of software-based systems not on trial deployment, but rather 
both on testing and other validation approaches that can be 
evaluated by an independent assessor. If the HAV industry 
wishes to follow those precedents, it will need a way to build a 
methodical, defensible safety argument that can be evaluated by 
an independent party despite any unique validation challenges.  

Limitations of Vehicle-Level Testing and Simulation 

As a practical matter, it is impossible to perform enough 
ordinary system-level testing to assure the safety of a life-
critical system. In general, this is because the exposure of an 
automotive fleet is so high, and life-critical safety requirements 
are so stringent, that testing cannot accumulate enough 
exposure hours to statistically prove safety. [19] 

For HAVs, one manifestation of the testing infeasibility 
problem is that unusual situations must be handled safely, but 
are comparatively rare in normal driving. Road testing is an 
inefficient way to observe rare events manifesting by chance. 
Closed-course testing can accelerate exposure to known rare 
events by setting them up as explicitly designed test scenarios. 
(E.g., [20].) Evaluation might be further accelerated by skewing 
distributions of test cases toward the more difficult known 
scenarios. (E.g., [21].)  For example, Waymo uses both closed-
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course testing and extensive simulation in addition to its on-
road test program. [4] 

Even covering known scenarios can be challenging due to 
resource limitations if it exclusively involves the use physical 
vehicles. Software-based vehicle simulation can scale up 
coverage of test scenarios via running simulations on many 
computers in parallel, but inevitably involves a tradeoff of 
fidelity vs. run-time cost as well as questions about 
completeness and accuracy of software models. Simulation 
suffers from the possibility of not simulating unanticipated 
scenarios (e.g., unknown safety-relevant rare events). 

“Shadow mode” driving [22] and SAE Level 3 autonomy 
deployment [6] can increase exposure to real-world driving 
scenarios by monitoring a deployed fleet in which human 
drivers are responsible for safety. However, there is controversy 
as to whether a human driver can effectively supervise safety in 
Level 3 systems. [23] 

Road testing, closed course testing, simulation, and monitoring 
of human-tended systems all have an important place in 
demonstrating HAV safety. However, to be both effective and 
efficient they should be organized in such a way as to work 
together in a complementary fashion. (We recognize that many 
HAV developers have sophisticated but proprietary approaches 
to validation. In this paper we assume a naïve mileage 
accumulation baseline approach to illustrate the issues.) 

Simulation Realism for Its Own Sake Is Inefficient 

When asking why on-road testing with a real vehicle is better 
than simulation, a typical answer is that it is more “realistic.” 
Ultimately testing a real vehicle in the real world is important. 
But realism for its own sake is an inefficient, and ultimately 
unaffordable, use of test resources. 

The key to simulation validity is having just the right amount of 
realism (simulation fidelity) to get the job done. It has famously 
been said that all models are wrong, but some are useful. [24] 
Since simulations involve a model of the system, a model of the 
environment, and a model of system usage, it follows that no 
simulation is perfect. 

The level of fidelity in a simulation is the degree to which it 
makes simplifications and assumptions about the behavior of 
the system. Low-fidelity simulations typically execute quickly 
by using simplified representations of systems (sometimes 
called reduced-order models), and hence in some sense are 
“wrong.” High-fidelity simulations typically are more complex 
and are more expensive to execute, but contain with fewer 
simplifications and assumptions, and are therefore “less 
wrong.” But both types of models can be useful. 

The key to improving testing efficiency is realizing that not all 
realism is actually useful for all tests. As a simple example, 
modeling the coefficient of road surface friction is generally 

irrelevant to determining if a computer vision capability can see 
a child in the road. (The friction coefficient is likely relevant to 
determining if the vehicle can stop in time, but is not relevant 
to whether a particular geometric and environmental scenario 
will result in detecting a child.)  This is true whether testing is 
done in software simulation (via modeling different road 
surfaces) or with a simulated test track scenario (via sand or ice 
on tarmac). 

The key to effective and efficient simulation is considering not 
only the system being validated, but also the assumptions made 
by the various-fidelity models of the system and operational 
environments. Accordingly, any practical validation effort 
should be considered as a hierarchical series of models of 
varying levels of abstraction and fidelity. Viewed this way, 
closed-course testing is a form of simulation, because even 
though obstacles and vehicles involved might be real, the 
scenarios are “simulated.” Validating HAV safety will require 
not only ensuring that the HAV system model is sufficiently 
accurate, but also validating both the environmental and usage 
models used to create test plans and testing simulations. 

Clarifying the Goals of Testing 

A robust safety validation plan must address at least the 
following types of defects that encompass potential faults in the 
system, the environment, and system usage: 

 Requirements defects: the system is required to do the 
wrong thing (defect), is not required to do the right thing 
(gap), or has an ODD description gap. 

 Design defects: the system fails to meet its safety 
requirements (e.g., due to implementation defects), or fails 
to respond properly to violations of the defined ODD. 

 Testing plan defects: the test plan fails to exercise corner 
cases in requirements or design, or has other gaps. 

 Robustness problems: invalid inputs or corrupted system 
state cause unsafe system behavior or failure (e.g., sensor 
noise, component faults, software defects), or an excursion 
beyond the ODD due to external forces. 

Among the challenges faced by HAV validation are incomplete 
requirements and implicit representations of both requirements 
and design. Non-deterministic system behavior further 
complicates matters. These challenges will of necessity affect 
the approach to and goals for system testing. [12] (That 
previous paper concentrates on identifying the challenges in 
validating autonomy, run-time monitoring approaches, and fail-
operational approaches. We build upon that previous work here 
by discussing the pieces of a validation approach.) 

In general, difficulties in applying traditional functional safety 
approaches to at least some HAV functionality motivates 
considering the different possible roles of testing in the overall 
safety validation process, as well as handling the issue of 
requirements incompleteness. 
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HAV Requirements Will Be Incomplete 

A key challenge for HAV validation is that a complete set of 
behavioral requirements needs to be developed before 
behavioral correctness can be measured to provide pass/fail 
criteria for testing. For example, while efforts are underway to 
document vehicle behaviors and scenarios (e.g., the Pegasus 
Project [25]), there is not a complete, public set of machine-
interpretable of traffic laws that includes exception handling 
rules (e.g., when and how exactly can a vehicle cross a center 
dividing line, if present, to avoid a lane obstruction?). We use 
the term “requirements” in this paper primarily to refer to 
system-level behavioral requirements, although the concepts 
can apply in other ways as well. 

Requirements gaps are a primary motivation for on-road 
vehicle data-gathering operations, which sometimes are loosely 
referred to as “vehicle testing.” The general strategy of inferring 
system requirements from road test data also affects the 
completeness of test plans, in that there will be testing gaps 
corresponding to gaps in system behavioral requirements (e.g., 
unknown and therefore missing behavioral scenarios). 

It is important to note that, strictly speaking, systems that use 
on-road data as the basis for training machine learning do not 
ever identify requirements per se. Rather, the training data set 
is a proxy for something akin to requirements. [12] In other 
cases, analysis of on-road data might be used to construct some 
level of explicitly stated requirements. Successfully validating 
an HAV requires that test plans capture and exercise the 
required behaviors, even if expressed implicitly. Regardless of 
the form, these requirements or proxies for requirements are 
likely to be incomplete for many initial HAVs deployments. 

Vehicle Testing for Debugging Can Be Ineffective 

A common view of system-level testing is that it is a way to 
discover software defects (“bugs”) and remove them. However, 
there is a steep diminishing returns problem for vehicle-level 
testing. Once the easy bugs have been found that involve typical 
driving scenarios, it can get dramatically more difficult to find 
additional defects. This is especially true for defects that require 
very precisely specified initial conditions, involve timing race 
conditions, or involve recovery from computational run-time 
faults that are difficult to induce using ordinary vehicle 
interfaces. This problem is even worse in robotics, in which we 
have observed that minute variations in lighting and geometry 
can trigger unreproducible bugs. In general, it can be expected 
that many such subtle bugs will escape detection and diagnosis 
during any reasonable amount of vehicle testing, and will be 
non-reproducible for practical purposes. However, they will 
surely show up in the field in high exposure applications such 
as automotive systems. 

Beyond an efficiency problem, any project that uses vehicle 
testing as its primary mechanism of defect removal has a 
fundamental problem in its safety world-view. Testing can 

prove the presence of bugs but not their absence. [26] 
Moreover, when all the bugs found by test have been fixed, the 
bugs that are left are ones that the testing procedures are not 
designed to find (the  Pesticide Paradox [27]). Thus, even if 
vehicle-level testing finds no problems at all, that does not mean 
the vehicle’s software is necessarily safe. This line of reasoning 
is simply another path to concluding that vehicle-level testing 
alone is an untenable approach to proving system safety. 

Vehicle Testing as Requirements Discovery 

Some forms of “vehicle testing” are actually aimed at 
requirements discovery. Examples of areas in which still-
maturing HAV development efforts might well have 
requirements gaps include: 

 Detecting and evading novel road hazards 
 Handling of exceptional situations that require violating 

normal traffic rules 
 Unusual vehicle configurations, surfaces, and paint jobs 
 Misleading but well-formed map data 
 Novel road signs and traffic management mechanisms 

specific to a micro-location or event 
 Unusual road markings and vandalism 
 Emergent traffic effects due to HAV behaviors 
 Malicious vehicle behavior (humans; compromised HAVs) 

While HAV designers should design for known requirements, 
continual novel operational “surprises” are inevitable in the real 
world for the foreseeable future. A primary rationale for Level 
4 automation rather than full Level 5 autonomy is so that the 
HAV does not have to handle all possible scenarios. Rather, a 
significant feasibility benefit of Level 4 autonomy is that it is 
permitted to exhibit a graceful failure when outside its ODD so 
long as its failure response is safe. Indeed, it would be no 
surprise if Level 5 autonomy remains an elusive goal over the 
long term, with Level 4 autonomy asymptotically approaching 
– but never actually attaining – complete automation in all 
possible operating conditions and scenarios.  

It is important to point out that Level 4 autonomy does not 
relieve an HAV safety assurance argument from having to deal 
with all possible scenarios, including ODD violations and novel 
scenarios. The general concept of an ODD seems to assume that 
one of the following two situations must be true: (1) there is 
some external guarantee that the HAV won’t encounter a 
situation it can’t handle well due to a highly reliable ODD 
constraint (e.g., robustly predicting kangaroo road hazard 
behavior [28] is generally not required on North America public 
roadways), and/or (2) the HAV will reliably detect that it is in 
a situation outside its ODD and bring the vehicle to a safe state 
(e.g., a vehicle not rated for kangaroo road hazards might be 
geo-fenced out of a wild animal park and the continent of 
Australia). In reality, it is possible that the ODD will be violated 
without being detected due to gaps in understanding the full 
scope of an ODD (e.g., the designers never considered 
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kangaroos in the first place), or gaps in the validation plan that 
omit testing relevant ODD constraints. 

An appropriate use of on-road operation is finding requirements 
gaps. Encountering some unexpected scenarios will result in a 
requirements update, while others result in a modification either 
of ODD parameters or ODD violation detection requirements. 
It is important that the HAV be acceptably safe when it first 
encounters such an ODD “surprise.” Accomplishing this is 
problematic since, by definition, such a scenario is unexpected 
and therefore not a designed part of any test plan. 

Since no validation approach is perfect, it is likely that some 
design defects will escape and be found via road tests, or even 
in deployed vehicles. However, this should be a very small 
fraction of the total number of defects found in the system, and 
those defects should result in safe behavior even if that behavior 
does result in a system safety shutdown or other loss of 
availability. If an excessive fraction of defects escape detection 
during the development cycle and aren’t seen until road testing, 
that is indicative of a systemic problem with requirements, test 
plan, or some other element of the validation approach. As with 
any safety critical design process, defect escapes to production 
systems should be cause for a significant response to correct 
any safety process problems that contributed to the situation. 

Separating Requirements Discovery and Design Testing 

A crucial perspective regarding the role of on-road testing is 
that accumulating miles in a search for missing requirements 
isn’t really “vehicle testing” in the traditional sense at all. It is 
a requirements-gathering and validation exercise. On the other 
hand, whether on-road data or some combination of simulation, 
synthesized data, and recorded data are the primary means for 
testing a particular HAV design is more at the discretion of the 
design team. So long as the design is validated according to an 
adequately complete set of requirements, on-road testing need 
not (and in practice should not) be the only testing performed. 

Thus, one way to reduce the time and expense of HAV 
validation is to separate (1) on-road for requirements gathering 
from (2) design and implementation validation. There is no 
obvious way around needing billions of miles of on-road 
experience to seek out rare but dangerous events that need to be 
mitigated by system safety requirements. But that doesn’t mean 
that design validation needs to re-do those billions of miles for 
every design change – at least if a more sophisticated approach 
is taken beyond brute force system-level testing. 

Vehicle Testing to Mitigate Residual Risks 

We can generalize upon the notion that on-road testing should 
primarily emphasize requirements validation, while lower level 
simulation and testing should emphasize the validation of 
design and implementation. In general, any level of simulation 
(including “simulated” aspects of vehicle testing) has a 
particular level of fidelity as previously discussed. That means 

that it is also “wrong” – just as all models are wrong – in some 
aspect due to its simplifications and assumptions. 

Improving testing efficiency can be accomplished by focusing 
the test plans for each level of fidelity on checking the 
assumptions and simplifications of lower-fidelity levels of 
simulation. At the same time, pushing as much simulation as 
possible to lowest practical level of fidelity will decrease 
simulation costs. For example, simple coding defects should be 
found in subsystem simulation (or even pre-simulation via 
traditional software unit test and peer reviews). On the other 
hand, rare event requirements gaps might be best found in on-
road testing if they are due to unforeseeable factors. This leads 
to an approach based on mitigating residual risks for each level 
of simulation fidelity, as discussed in the following section. 

A Layered Residual Risk Approach 

Since complete human-interpretable design and requirements 
information is unlikely to be available for HAVs in the near 
term, some approach other than, or in addition to, the traditional 
V model must be used for validation. To do this, we need to 
start with at least a (possibly incomplete) set of safety 
requirements. Then, we must find a way to trace some 
combination of road testing, closed course testing, and 
simulation results back to those safety requirements. 

Validation According to Safety Requirements  

At the highest level, we need some type of system requirements 
to be able to determine whether tests actually pass or fail. If 
functional requirements are not fully spelled out, then we need 
something else. The good news is that optimal performance 
may not be needed to provide safety. Rather, simpler 
requirements are likely to be sufficient to define safe operation.  

For example, we have found that a list of unsafe behaviors that 
are forbidden based on safety envelopes can be sufficient for 
some autonomous vehicle behaviors. [29] In that case, testing 
can be traced to explicitly stated safety requirements even if the 
functional requirements themselves are opaque or 
undocumented. One way to specify safety envelopes is using 
runtime invariants allocated to a distinct safety checker 
functional block. [30] As a simple example, a safety envelope 
for lane-keeping could be that the vehicle stays within its lane 
boundaries plus some safety margin. This is much simpler to 
specify and use as a test success oracle than checking perfect 
implementation of a complex algorithm that optimizes the 
vehicle’s lane position according to road geometry and traffic. 

While tracing tests to stated safety requirements can be helpful, 
we have found via experience that too often safety requirements 
are poorly understood, or not even written down at a useful level 
of detail. While a vague notion that mishaps should not occur is 
a starting point, there must also be a concrete and specific way 
to determine if a test has shown that a system is safe or not. In 
practice, we have found that a set of partial runtime invariants 
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that specifies a combination of safe and unsafe system state 
space envelopes can be evolved over time in a continuous 
improvement approach in response to the results of testing and 
simulation. In other words, one way to approach the problem of 
missing safety requirements is to start with simple set of rules 
and elaborate them over time in response to tests that violate 
those simplistic rules. False positive and false negative rule 
violations can drive refinement of the rule set. Generally, this 
evolution works best if it starts with an under-approximation of 
the safe operating envelope (increasing the high false positive 
rate) and progressively adds additional envelope area (and 
accompanying test oracle detail) when analysis shows that 
doing so is a safe way to increase envelope permissiveness. 

If an HAV design team attempts to determine safety 
requirements via machine learning-based approaches, it will be 
important for them to express the results in a way that is 
interpretable to human safety argument reviewers. However, it 
is unclear how that might be done. At this point we recommend 
using more traditional engineering approaches to defining 
safety requirements to avoid the same problem of inscrutability 
that befalls ML-based functionality. 

Basing Validation on Residual Risks 

While a safety envelope approach can simplify the complexity 
of creating a model of requirements to use for pass/fail criteria, 
HAV testing will still need to run a huge number of scenarios 
to attain reasonable coverage. Ideally as much as possible will 
be done with comparatively inexpensive, low-fidelity 
simulations. Then the approach should add fidelity not just for 
the sake of undifferentiated “realism,” but rather for the sake of 
reducing the residual risks due to simplifications made by low 
fidelity simulations. 

Managing Residual Risks 

The important relationship between high- and low-fidelity 
simulation runs should not be one of “sanity checking” or 
statistical sampling, but rather one of emphasizing validating 
the correctness of assumptions and simplifications made at 
lower fidelity levels. In other words, for each aspect in which a 
particular level of fidelity model is “wrong” in some respect, a 
higher fidelity simulation (including potentially various types 
of physical vehicle testing) should assume the burden of 
mitigating that residual safety validation risk. 

This approach is different than the usual notion of model 
validation in an important way. Higher fidelity levels of 
simulation are not only used to validate the correctness of lower 
fidelity models, but must also be explicitly designed to 
emphasize checks of the assumptions and simplifications that 
are known to be present as simulations are run. A primary goal 
of a higher fidelity model should be to mitigate that residual risk 
by not only checking the accuracy of lower fidelity simulation 
results, but also by checking whether assumptions made by 
lower fidelity models are violated when the higher fidelity 

simulation is performed. As a simple example, if a simplified 
model assumes 80% of radar pulses detect a target, a higher 
fidelity model or vehicle test should flag a fault if only 75% of 
pulses detect a target – even if the vehicle happens to perform 
safely according to the higher fidelity model. The assumption 
of 80% detection rates is a residual risk of the lower fidelity 
simulation that makes that assumption. Violating that 
assumption invalidates the safety argument, even if a particular 
test scenario happens to get lucky and avoid a mishap. 

This approach fundamentally affects the design of a simulation 
and test campaign. For example, consider a simulation that 
explores obstacle placements across the field of view. The 
simulation arranges obstacles in the environment with very 
precise resolution, but uses only crude stick-figure simulated 
pedestrian objects in static positions at a fixed orientation. 
Doing thousands of additional high-fidelity vehicle tests while 
varying obstacle placement would be expected to yield a low 
marginal validation benefit over exhaustive simulation results, 
especially if the simulation exercises the actual geometry 
processing code that will be deployed in the HAV. That is 
because in this example obstacle placement relative to the 
vehicle is not the primary source of residual risk after 
simulations are completed. The main residual risk revolves 
around the pedestrians. The low-fidelity simulation assumes 
stick figure people, thereby omitting consideration of people 
carrying large objects, people wearing clothing that 
significantly distorts sensor signals, different rotational 
positions with regard to vehicle sensors, and so on.  

By the same token, any improvement of simulation capability 
should not merely strive to make the simulation higher fidelity 
in every possible dimension. For example, modeling road 
obstacle placement down to the nanometer rather than the 
millimeter is not likely to be a generally productive use of 
simulation resources. Rather, simulation fidelity improvements 
should be made to replace required system level tests with 
simulations (e.g., adding surface texture capability as well as a 
wider variety of geometrical shapes and orientations for the 
previous stick figure example). 

This does not mean that simulation model verification and 
validation (e.g., as described in [31]) should be neglected. 
Rather, the point is that even a perfectly validated model at a 
particular level of abstraction leaves residual risk. Part of the 
risk is because of the possibility of an incomplete testing 
campaign, which amounts to not fully mitigating risks inherited 
from lower fidelity simulation or not fully covering the areas 
assigned to the level of fidelity in question. Another part of the 
risk is due to safety considerations that have been intentionally 
excluded at a particular level of abstraction, which corresponds 
to risks passed up the line to the next higher level of fidelity. 

Thus, the time-honored approach of using runs of varied 
simulation fidelity [32] still makes sense for HAVs. The art is 
in making sure that simplifications in lower fidelity tests are 
explicitly managed and mitigated as validation risks. 
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The approach of accelerated evaluation via biasing tests 
towards difficult scenarios [21] is complementary to a residual 
risk approach. Emphasizing difficult scenarios is intended to 
winnow redundant nominal path tests from the test set while 
still covering off-nominal behaviors, edge cases, and complex 
environmental interactions. On the other hand, residual risk 
mitigation addresses the potential problem of risks due to 
simplifications and unchecked assumptions made by lower 
fidelity layers of a simulation and testing plan. 

An Example of Residual Risks 

Table 1 shows a simplified example of residual risks that should 
be considered with an HAV testing and simulation plan. The 
residual risks at the top of the table tend toward requirements 
gaps (unexpected scenarios and unexpected environmental 
conditions). In comparison, the other residual risks tend toward 
a combination of simplifications driven by speed/fidelity 
simulation tradeoffs (e.g., sensor data quality) at the mid-level, 
and potential design issues (e.g., subsystem interactions) at the 
lowest level.  

Validation Activity Residual Risks (Threats to Validity) 

Pre-deployment 
road tests 

Unexpected scenarios, environment 

Closed course 
testing 

As above, plus: Unexpected human driver 
behavior, degraded infrastructure, road 
hazards 

Full vehicle & 
environment 
simulation 

As above, plus: simulation inaccuracies, 
simulation simplifications (e.g., road 
friction, sensor noise, actuator noise)  

Simplified vehicle 
& environment 
simulation 

As above, plus: inaccurate vehicle 
dynamics, simplified sensor data quality 
(texture, reflection, shadows), simplified 
actuator effects (control loop time 
constants) 

Subsystem 
simulation 

As above, plus: subsystem interactions 

Table 1. Hypothetical validation activities and threats to 
validity. 

Revisiting the previous obstacle detection example, this means 
that higher fidelity levels such as physical vehicle testing should 
not primarily focus on different sizes and placement of 
obstacles. Rather, they should focus on things such as dirt on 
objects and sensors, and other aspects that might not be handled 
by software-only simulation tools. In other words, vehicle 
testing should mostly concentrate not on reproducing 
simulation results, but rather on challenging any known weak 
points of the simulation methodology. Specifics will vary. The 
point is that all simulation tools have limitations of some sort 
that require further validation efforts. 

For the example shown in Table 1, closed course testing should 
not focus on unexpected human driver behavior, degraded 
infrastructure, or road hazards, because mitigating those threats 

is the primary reason to do pre-deployment road tests. Expected 
behaviors, road hazards, and so on should be handled with 
testing and simulation. It is unexpected problems that can’t be 
addressed, because an unexpected problem is by definition not 
something that can be explicitly included in a test plan. 

It is important to avoid burdening higher level system testing 
with addressing risks that should properly be dealt with at lower 
levels. Continuing the example, closed-course testing should 
not be significantly concerned with normal vehicle dynamics, 
and ordinary issues of sensor data quality and actuator effects, 
since those can be taken care of with software-based simulation. 
Vehicle testing should also not be used to brute force test 
obstacle placement and geometries that can more be dealt with 
in a more cost-efficient way with simplified vehicle and 
environment simulation that exercises just the vehicle’s 
obstacle-handling code. Prototyping tests with a real vehicle on 
a closed course might make sense when validating the 
simulation capability. But executing the actual vehicle testing 
campaign should be done at the lowest practical level of 
simulation fidelity for each aspect of the test plan as much as 
possible to reduce time and costs. 

The overarching idea is that the primary emphasis in each level 
of validation should be on residual risks inherited from the next 
lower level, especially when re-running existing simulation test 
suites on a system that has been modified so as to ensure that 
the system is still safe. Extensive sampling to exhaustively 
replicate the results of lower fidelity simulation and testing is 
wasteful at best, and at worst gives a false sense of security if 
the random sampling does not cover residual risks. 

Improving Observability 

Given a thorough simulation- and vehicle-based test plan, 
sufficient controllability and observability must be provided to 
yield a credible safety validation outcome. 

Controllability and Observability 

Controllability is the ability of a tester to control the initial state 
and the workload executed by a system under test. 
Observability is the ability of the tester to observe the state of 
the system to determine whether a test passed or failed. [33] 

Controlling test scenarios to elicit a particular autonomous 
system behavior is difficult. [12] This is due to a combination 
of the use of stochastic methods (e.g., randomized path 
planners), sensitivity to initial conditions (e.g., exactly 
repeatable sensor alignment within a test environment), 
variability in actuator outputs (e.g., unexpected variations in 
environmental interactions with actuators), and computational 
timing variations. 

A useful approach to improving controllability is to use 
simulation that can avoid physical world randomness and 
constraints. Beyond that, a system testing interface can be 
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provided that forces the system into an initial state for testing. 
For example, a path planner might be tested in a repeatable 
manner if its internal pseudo-random number generator can be 
set to a predetermined seed value. As a practical matter, 
deterministic testing requires that the HAV software be 
intentionally designed to provide a deterministic testing 
capability. It can be difficult to mitigate sources of non-
determinism in software after it has been constructed. 

Observability can be a more difficult problem. For example, in 
a vehicle-level obstacle test the vehicle either leaves sufficient 
clearance as it passes an obstacle or it does not. But, even if the 
system “passes” a test by not colliding, that could simply be due 
to the system getting lucky in avoiding an obstacle it did not 
even know was there. The system might hit the obstacle on the 
next test run – or perhaps hit it 2000 test runs later. This lack of 
observability is one facet of the robot legibility problem, which 
recognizes the difficulty of humans understanding the design, 
operation, and “intent” of a robotic system. [34] (The additional 
role of legibility in HAV interaction with human drivers is an 
important one, but beyond the scope of this paper.) 

While one can argue that it is unlikely a system will repeatedly 
pass tests by dumb luck, the sheer number of test parameters 
involved makes the “repeatedly” part of that argument 
expensive. And, regardless of how many tests are run, it is 
difficult to achieve an extreme level of statistical significance 
via testing for life-critical assurance levels.  (Even a 99.99% 
confidence level for a system avoiding a detected child in a 
crosswalk seems problematic if it could result in one out of 
10,000 children being hit.) Thus, there will always be a residual 
risk that some combinations of scenario elements pass tests 
repeatedly due to a lucky streak rather than due to a safe design. 

Software Test Points 

Rather than relying only upon system-level behavior and brute 
force repetition to determine if a test passes, a more efficient 
testing approach can be to insert software test points into the 
system to improve observability. For example, if sensor fusion 
dependability is a residual risk due to simulation limitations, a 
relevant test point for closed course vehicle simulation would 
be monitoring the computed certainty level of a sensor fusion 
results. That would provide information about whether a test 
obstacle is being avoided with the intended margin of error 
rather than by luck. (The issue of software test points potentially 
disturbing the system under test can be resolved by architecting 
test points in as a permanent part of the system. This will in turn 
facilitate data collection in the deployed system.) 

Software test points also facilitate monitoring for safety 
argument assumption violations during fleet deployment. The 
previously discussed 80% detection rate assumption example 
can be monitored not only during testing, but also during full 
scale vehicle deployment to detect assumption violation 
escapes into fielded systems.  

Passing Tests for the Right Reason 

When a human takes a driver test, the test examiner has a fairly 
accurate (or at least useful) mental model of the driver behind 
the wheel. If the driver changes lanes without making eye 
contact with a rear-view mirror or otherwise checking for 
vehicles in the destination lane, the examiner knows that the 
driver got lucky in executing a collision-free lane change 
instead of behaving properly. With an HAV, this type of 
assessment is more difficult, because it is unclear what the 
“tells” are for a machine exhibiting safe behavior vs. getting 
lucky with unsafe behavior. That is especially true if 
requirements and design are not traceable via a V-based safety 
process. 

If HAV safety is to be based in part on a driving-test type event, 
then the examiner must know that the HAV not only behaves 
the right way, but also behaves the right way for the right 
reason. Even without a formal driver test, being able to 
reasonably infer causality of actions from explicit system 
information can reduce testing costs compared to a brute force 
statistical approach. Having an HAV self-report regions of 
saliency [35], bounding boxes on objects, and so on is not a new 
idea. However, explicitly including such capabilities in a safety 
argument can reduce testing cost if exploited in the right way. 
This may motivate further work to verify that self-reporting and 
explainability mechanisms work reliably. 

One way to couple scenarios with behaviors is to have the HAV 
self-report the scenario it thinks it is in, or the various scenario 
elements that it thinks are in play. As an example, rather than 
just performing a vehicle lane change when it can, the vehicle 
might report: “I want to change lanes … I am checking the next 
lane and there is a car there but it is sufficiently far behind me 
that I am clear … I am starting to change lanes … I am 
continuing to monitor that the lane is still clear ... the car behind 
me is speeding up to close the gap …” and so on. Some HAV 
architectures might provide this level of observability already. 
The question is how formally such information is used by the 
validation strategy. Moreover, many popular approaches (e.g., 
end-to-end deep learning) explicitly eschew architectural 
modularity, which tends to degrade observability. They do so 
with the goal of achieving higher performance, a tighter 
implementation, and less development effort. [36] Lack of 
observability has the potential to exact a high price in terms of 
validation effort or deployment risk for such systems.  

An effective driving test should require not only correct 
behavior, but also a correct introspective narrative of why the 
HAV is acting the way it is. That is a good start, but we must 
then must question the integrity of a machine’s explanation for 
its actions. However, we argue that deciding whether to trust an 
explicit explanation is an easier to solve problem than having to 
infer (and then trust) an opaque implicit explanation via 
behavioral observation. Either way, a decision must be made 
about whether the vehicle will do the right thing in future 
circumstances that are not exact matches to training and test 
data sets. The advantage of an explicit explanation is that the 
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validity of that mechanism can be made falsifiable if it is 
required to match the test plan narrative. In designing safety-
critical systems, we prefer explicit, verifiable, simple patterns 
that might be less performant over those that are highly-
optimized but opaque. We have reason to believe this trend will 
hold for HAVs when considering the consequences of 
attempting to deploy difficult-to-validate systems. 

Architecting such a system will require introducing or 
identifying observability for the purpose of validation. This 
might be accomplished by having a tool that converts existing 
data to human-interpretable form, adding a test point to the 
system architecture, or re-architecting the system to 
intentionally create new forms of human-interpretable data. 
(Figure 1)  

 
Figure 1. System validation should determine that the system 

does the right thing for the right reason. 

For machine learning systems, this approach suggests a 
somewhat unusual design strategy. Rather than having an ML 
system learn its own feature set for achieving an outcome, it 
must meet two concurrent goals: (1) display the right behavior, 
and (2) display a set of narrative descriptions or other 
explanation that matches its behavior. One way to accomplish 
this is to use models of environments and usage scenarios to 
define the set of ML outputs that must be learned. While this 
might be seen as additional design burden and overhead, such 
might be the price for being able to know whether a vehicle is 
actually safe enough to deploy. 

To avoid a mismatch between behavior and narrative, one 
possibility is to arrange the ML system so that it operates in two 
disjoint phases: first creating the narrative, and then using the 
narrative as inputs for its behavior, as shown in Figure 1. The 

first phase might build on existing work on creating 
descriptions of scenarios and hierarchical classification. (E.g., 
[37][38].) The system actuation should be responsive to the 
narrative by having the second stage be fully dependent upon 
the outputs of the first stage. This dependency mitigates the risk 
of a parallel narrative construction being generated that does not 
actually match the system’s actuation strategy. 

Coping with Uncertainty 

Knowns and Unknowns 

Even with a validated and apparently defect-free system, there 
is still residual risk from problems due to incomplete 
understanding of the system and its requirements. These include 
at least the following potential types of issues: 

 Emergent system properties and interactions that are not 
accounted for at the appropriate validation phase 

 Unexpected correlated faults in areas for which safety 
depends upon implicit independence assumptions 

 Scenario and environment exceptions that happen too 
infrequently to be diagnosed by pre-deployment road tests 

 Uncertainty as to the arrival rates of unmitigated hazards 
that were assumed to be extremely infrequent 

 In-range system inputs that activate unexpected defects in 
ML-based components 

There are doubtless other types of defects that are not listed 
above and are not included in at least some HAV validation 
plans. Those are the famous “unknown unknowns” [39] that can 
compromise safety and cause other system failures. 

Dealing with Unknown Defects 

While approaches such as safety envelopes can help, in the end, 
there is no way to completely mitigate residual risks from 
unknown types of defects. However, the arrival of unexpected 
faults can be monitored to increase confidence over time that 
the residual risk is sufficiently low. It is essential to recognize 
unknown problems as a residual risk that must be monitored 
and mitigated as necessary throughout the life of the fleet. A 
confidence assessment framework [40] that has been extended 
to include unknown unknowns is one approach that could 
provide a way to manage residual risks. 

Each time a surprise causes a safety problem, additional steps 
should be taken to address underlying system and safety 
argument assumptions that are invalidated by the newly 
discovered issue (this is in accordance with existing safety 
practices, e.g., [8]). It is important to do a root-cause analysis 
of unexpected faults to at least determine if a problem is a 
known unknown (in which case now you know more about it), 
or an unknown unknown (in which case you need to add a 
category of defect type to your validation plan and safety 
argument to address this new unexpected source of problems). 
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HAV Maturity 

There is substantial intuitive appeal to having a “driving test” 
as part of HAV validation. However, the analogy of taking an 
HAV out for a road test similar to a human driving test falls 
short because there are actually two key elements to a human 
driving test. The first element is the obvious, overt requirement 
that the driver must show basic driving knowledge and 
proficiency, including a driving skills test. 

The second and more subtle part of passing a driving exam is 
that the driver must be approximately 16 years old, depending 
upon locale. That age requirement serves as a proxy for having 
reasonably mature judgment that can handle exceptional 
situations and generally behave in a reasonable manner when 
encountering a novel unstructured situation. In the real world, 
correct vehicle operation depends in part upon traffic 
regulations. However, it also depends upon whether a police 
officer expertly, though subjectively, thinks the driver behaved 
in a reasonable and responsible manner for a given situation. 
(“Plays well with others” is an important HAV characteristic, 
especially in mixed human/HAV traffic.)  

While it is possible (some say certain) that HAV behavior can 
be safer than a person given human frailties, how to measure 
HAV “maturity” to ensure that this desirable outcome is fully 
achieved remains an open question. 

One way to measure HAV maturity is to deploy vehicles and 
see how they do. That is one of the arguments for deploying 
SAE Level 3 automation, which in effect uses a human in the 
role of an adult supervisor who monitors the junior driver 
during learner’s permit operation. However, there are legitimate 
concerns that driver supervision will be ineffective over long 
periods of exposure due to driver dropout, especially when 
automation fails infrequently. [41]  

We propose two different approaches for evaluating HAV 
maturity beyond developer adherence traditional safety critical 
software engineering principles. The first way is ensuring that 
the HAV passes a detailed technical driving skill test for the 
right reasons, and the second way is monitoring whether the 
HAV validation assumptions and residual risk monitoring hold 
up when it is deployed in the real world. In other words, the 
system design might be considered to be mature if the vehicle 
can explain its behavior in a way that makes sense to a human 
and its safety case assumptions hold true in operation. 

HAV Probation: Monitoring Assumptions 

Any responsible decision to deploy an HAV must be more 
sophisticated than simply saying “we fixed all the bugs we 
found so we must be perfect,” because that is never a reflection 
of reality. There is always one more bug. [42] Rather, a safety 
argument based on phased validation should at least be made 
based on measuring rates of defect escapes from each phase of 
validation. This argues that observability test points should be 

retained and monitored all the way through to fleet deployment. 
Doing so permits monitoring system design maturity by 
ensuring that there are no vehicle operational situations that 
invalidate assumptions. If a high rate of assumption violations 
is detected by runtime monitoring, that can provide valuable 
feedback to the design team of an impaired safety margin. In 
this manner, issues with the safety argument can be identified 
even if no actual mishaps have occurred. 

As another example beyond the previously discussed 
assumption violation example, consider the somewhat 
controversial topic of disengagement reports for HAV road 
testing. [23] Clearly, not all disengagements are created equal, 
especially given that various teams are likely to have different 
false positive rates for triggering disengagements.  

Using an approach such as Orthogonal Defect Classification 
(ODC) [43] might reveal, for example, that some 
disengagements are due to problems that should have been 
caught in subsystem simulation, while other disengagements 
are due to the discovery of a requirement or scenario gap at the 
highest level. While one expects that HAV development teams 
do some sort of analysis on disengagements, a methodical 
analysis that maps defects back to residual risks identified in a 
validation plan has significant potential benefits, such as 
providing a health indication for the safety argument and the 
HAV’s overall maturity level. 

This approach can support an external assessment of autonomy 
validation by presenting a well-reasoned set of risk mitigation 
goals for each phase of validation. Those can be paired with 
data on defect escapes as measured by relevant observability 
points during simulation, vehicle testing, and deployment. All 
this implies that the “driver test” is not actually a one-time 
event, but rather involves a continual “license” renewal process 
based on collecting and analyzing field data on defect escapes 
over the life of the system.  

Deploying with Residual Risks 

It is important to acknowledge that this discussion has 
contemplated fielding HAVs that have residual risks, and in 
particular, potential gaps in requirements and design 
verification. This is inherent to the domain and the technology 
being deployed. It will be some time before statistically 
defensible amounts of data are accumulated to argue that the 
residual risks fall below the usual safety critical system safety 
thresholds (for example, below one catastrophic vehicle mishap 
per 109 or 1010 operational hours). Given the current HAV 
market and regulatory climate, it seems likely that public 
deployment will scale up before such data is collected. 

Regardless of the appeal of fielding HAVs, is essential that the 
deployment be done in a responsible manner. In particular, 
residual risks should not be accepted blindly. Rather, residual 
validation risks at all levels should be explicitly understood as 
well as monitored during deployment. As an example, credible 
arguments that a particular category of residual risk is likely to 
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result in low consequence, highly survivable, or extremely 
infrequent mishaps might be a legitimate motivation to 
determine they are “acceptable” even if the full extent of the 
risk is unclear. However, any such argument should be 
supported by monitoring field feedback data to determine if the 
assumptions that support the acceptance of such risks are 
actually true, preferably without waiting for an accumulation of 
serious loss events. 

Ultimately ethical issues arise, such as whether it is better to 
deploy imperfect technology if there is an expected net savings 
of life. [44] Safety professionals in particular face a pragmatic 
choice as to whether they participate in a release of a safety-
critical system with unknown (and unknowable, in the short 
term) but safety risks, or they miss an opportunity to improve 
the relative safety of HAVs that are bound to be deployed with 
or without their help. A goal of this paper is to provide a 
framework for validating such systems before they are 
deployed that will improve the developers’ ability to identify 
and manage accepted risks. 

Conclusions 

Summarizing, we describe an approach to HAV validation that 
includes the following elements: 

 A phased simulation and testing approach that emphasizes 
testing to mitigate residual validation risks from the 
previous phase while exploiting the speed vs. fidelity 
scalability properties inherent in testing and simulation. 

 Observability points to produce human-interpretable data 
that both detect defect escapes from lower fidelity 
simulation phases and demonstrate the system is doing the 
right thing for the right reason. 

 Explicit differentiation of the various roles of testing from 
checking for requirements gaps to checking for design 
faults, and matching each type of testing with a relevant 
portion of a phased validation approach. 

 A run-time monitoring approach to managing identified 
risks, catching assumption violations and unknown 
unknowns as they arise in fielded systems. 

This approach can be expected improve validation effectiveness 
compared to a brute-force testing campaign because it explicitly 
links testing and simulation activities to the risks being 
mitigated. This in turn permits concentrating effort on the sweet 
spot of defect detection for each particular level of simulation 
and test fidelity. The approach can also be expected to improve 
testing efficiency by concentrating each phase of testing on 
mitigating risks inherited from the preceding phase, without 
wasting resources revisiting low-risk conclusions or attempting 
to address out-of-scope risks that belong to other testing phases. 
(Other forms of validation beyond testing are also important, 
such as employing ISO 26262 approaches to appropriate 
portions of system functionality.) 

We recognize that, due to the challenges of conclusively 
establishing the safety of machine-learning functions, the 
approach presented here will yield an ongoing process of 
iterative improvement rather than air-tight proofs of safety. 
However, the approach will serve to underscore where 
assumptions are being made, and where safety case evidence is 
missing. One way of validating the approach as well as the 
system is to create a Goal Structuring Notation-organized safety 
case (e.g., starting with [45]) and including explicitly stated 
assumptions to complete the argument. Each assumption 
identifies the residual risks for a testing or simulation technique. 
Assumptions that are checked by other validation approaches 
form part of the safety argument chain. Assumptions that can’t 
be validated at design time are residual risks that are especially 
important candidates for run-time monitoring in deployed 
systems. 

At some point, designers will have to decide on a responsible 
deployment plan that might involve taking risks that are judged 
to be acceptable according some defensible set of technical and 
social criteria. To minimize unmitigated residual risks, we 
suggest avoiding architectures in which autonomy that can’t be 
validated using traditional safety approaches is the sole means 
of ensuring operational safety. One alternative is using a safety 
checker that can be rated appropriately according to ISO26262, 
such as a safety envelope monitor. [46]  

While it is always better to ensure that all residual risks are 
known and mitigated to an acceptable level, it is clear that 
HAVs are going to be deployed even if there are places in which 
the safety argument contains risks that are not completely 
understood. The approach discussed in this paper provides a 
framework for establishing an initial safety argument based on 
multiple levels of simulation and testing fidelity. It also 
provides hooks for continuous improvement based on 
monitoring assumption violations and other residual validation 
risks during the course of testing and deployment. 

Our next steps are refining techniques for establishing 
traceability from safety requirements to test and simulation 
plans, and applying this approach to at-scale validation 
activities.  
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HAV Highly Automated Vehicle 

ODD Operational Design Domain 

NHTSA National Highway Traffic 
Safety Administration 

SOTIF Safety Of The Intended 
Functionality 

V model A software development 
model that includes 
requirements and design on 
the left side of a “V” with 
verification and validation on 
the right side of the “V” 

 

 


