

PREPRINT: 2018 SAE World Congress 1

PREPRINT: 2018 SAE World Congress / SAE 2018-01-1071

Toward a Framework for Highly Automated Vehicle Safety Validation

Philip Koopman & Michael Wagner
Carnegie Mellon University; Edge Case Research LLC

Abstract

Validating the safety of Highly Automated Vehicles (HAVs) is
a significant autonomy challenge. HAV safety validation
strategies based solely on brute force on-road testing campaigns
are unlikely to be viable. While simulations and exercising edge
case scenarios can help reduce validation cost, those techniques
alone are unlikely to provide a sufficient level of assurance for
full-scale deployment without adopting a more nuanced view
of validation data collection and safety analysis. Validation
approaches can be improved by using higher fidelity testing to
explicitly validate the assumptions and simplifications of lower
fidelity testing rather than just obtaining sampled replication of
lower fidelity results. Disentangling multiple testing goals can
help by separating validation processes for requirements,
environmental model sufficiency, autonomy correctness,
autonomy robustness, and test scenario sufficiency. For
autonomy approaches with implicit designs and requirements,
such as machine learning training data sets, establishing
observability points in the architecture can help ensure that
vehicles pass the right tests for the right reason. These
principles could improve both efficiency and effectiveness for
demonstrating HAV safety as part of a phased validation plan
that includes both a “driver test” and lifecycle monitoring as
well as explicitly managing validation uncertainty.

Introduction

Wide-scale deployment of Highly Automated Vehicles (HAVs)
seems imminent despite facing significant interdisciplinary
challenges. [1] At this time, there is no generally agreed upon
technical strategy for validating the safety of the non-
conventional software aspects of these vehicles. Given
NHTSA’s “non-regulatory approach to automated vehicle
technology safety” [2], it seems that many HAVs will be
deployed as soon as development teams think their vehicles are
ready – and then they will see how things work out on public
roads. Even if pilot deployments yield acceptably low mishap
rates, there is still the question of whether a limited scale
deployment will accurately forecast the safety of much larger
scale deployments and accompanying future software updates.

It is common to see statements to the effect that accumulating
on-road miles will validate HAV system safety, especially in
the context of attempting to characterize progress of
development efforts. (E.g., [3], although this does not

necessarily represent the actual safety approach of the company
discussed.) More comprehensive discussions of the topic still
tend to heavily emphasize the role of testing, even if other forms
of validation are mentioned. (E.g., [4][5].) However, even with
closed courses and high-fidelity simulation, there are limits to
the amount of vehicle-level testing that can be done before
deployment.

The scope of this paper is validation required beyond ISO
26262 compliance, with an emphasis on SAE Level 4
autonomy. Level 4 HAVs are only required to operate
autonomously within a defined Operational Design Domain
(ODD), which defines the specific conditions under which the
system is intended to function. [2][6]

A safety validation approach for HAV autonomy that goes
beyond mileage accumulation is highly desirable. Preferably, it
should also be based on a falsification approach that includes
concrete, testable safety goals and requirements. [7] This paper
proposes a number of ways to improve HAV validation
efficiency, increase effectiveness, and lead to a more defensible
safety argument. A layered series of validation steps can help
support a conclusion that an HAV system is acceptably safe,
even in the absence of a completely specified set of traditional
functional requirements for autonomy functions.

Approach

We believe that HAV validation efforts can be significantly
strengthened by applying the following ideas:

1. Disentangle the disparate goals of testing by separately
managing requirements validation and design validation.

2. Use higher-fidelity simulation and tests to reduce residual
risks due to assumptions and gaps in lower fidelity
simulations and tests.

3. Provide observability in the HAV architecture to ensure
that tests are passed for the right reasons.

4. Explicitly manage uncertainty within the safety argument.

Although these ideas are based on existing practices in some
domains, the novelty of HAV technology and the pace at which
HAVs are being commercialized motivates a clear, unified
description of how these ideas can be applied to manage and
reduce the risk of aggressive HAV deployment.

PREPRINT: 2018 SAE World Congress 2

Terminology

Our terminology is generally compatible with ISO 26262. [8]
The following terms are defined particularly relevant:

Risk: a combined measure of the probability and consequence
of a mishap that could result in a loss event.

Safety: absence of unreasonable risk of a mishap resulting in a
loss event. Level 4 HAV loss events can include fatalities
potentially attributable to HAV design defects or operational
faults. For initial HAV deployment, evaluation of what might
constitute a “reasonable risk” will be influenced by public
policy decisions.

Safety Validation: demonstrating that system-level safety
requirements (safety goals) are sufficient to assure an
acceptable level of safety and have been achieved.

Safety Argument (Safety Case): a written argument and
evidence supporting safety validation.

Machine Learning (ML): an approach using inductive learning
for system design, in which a run-time system uses the results
of a learning process to perform algorithmic operations (e.g.,
running a deep convolutional neural network having
precomputed weights). This paper assumes weights are fixed
before validation. Validating dynamically adaptive ML systems
that modify weights or otherwise learn at run-time is beyond the
scope of this paper.

The Role of Vehicle Test and Simulation

Before describing proposed validation strategies, it is helpful to
review typical uses of testing and simulation in current HAV
safety assessment approaches.

Beyond ISO 26262

Dealing with many potential design and implementation defects
can, and should, be done via use of an established safety
standard such as ISO 26262. [8] For areas in which even a
perfectly working system might not provide completely safe
functionality, an emerging standard covering Safety of the
Intended Functionality (SOTIF) might be used. [9] A SOTIF
standard might provide a way to deal with functions with
statistically valid functionality, such as radar-based obstacle
detection functions. Other issues specific to ML-based systems
must also be addressed, as discussed in [10]. Overall, the
problem with validating according to a V model as is typical in
functional safety approaches is that ML system functionality
can be opaque to humans. [11] This makes traceability
problematic to the degree that humans performing traceability
analysis can’t analyze design artifacts. [12]

Rather than attempt a design-to-test traceability approach
according to the V model, we instead explore what can be done

with a test-centric approach to areas beyond the obvious scope
of practical application of ISO 26262 and SOTIF standards
which are not designed for ML validation.

System Test/Debug/Patch as a Baseline Strategy

Historically, on-road testing has been emphasized in
prototyping autonomous vehicles. (E.g., [13][14][15][16][17].)
The field of robotics relies heavily on “real-world” testing in
order to gain an understanding of what features robots need.
However, as vehicles transition from prototype to production,
the approach to validation must become more comprehensive.

Basing an HAV safety argument solely on accumulating road
miles is an impractical way to validate safety. Such a brute force
approach takes a huge number of miles to make a credible
statistical argument. [18] Beyond that, the validity of
accumulated road testing evidence is potentially undermined
with each software change, whether it be an update to training
data, the addition of new behaviors, or just a security patch.

As a practical matter, what happens if, after billions of miles of
road testing and simulation, the data shows that an HAV is not
living up to its hoped-for safety goal? Will the development
team (or should they) do another billion miles of road testing
after fixing any observed defects? Or will the team just patch
the readily reproducible bugs, test for a few miles, and declare
victory, moving on to deployment? And how will the realities
of the intense pressure from the race to market influence a
team’s interpretation of results and approach to validation?

Essentially all other industries base functional safety validation
of software-based systems not on trial deployment, but rather
both on testing and other validation approaches that can be
evaluated by an independent assessor. If the HAV industry
wishes to follow those precedents, it will need a way to build a
methodical, defensible safety argument that can be evaluated by
an independent party despite any unique validation challenges.

Limitations of Vehicle-Level Testing and Simulation

As a practical matter, it is impossible to perform enough
ordinary system-level testing to assure the safety of a life-
critical system. In general, this is because the exposure of an
automotive fleet is so high, and life-critical safety requirements
are so stringent, that testing cannot accumulate enough
exposure hours to statistically prove safety. [19]

For HAVs, one manifestation of the testing infeasibility
problem is that unusual situations must be handled safely, but
are comparatively rare in normal driving. Road testing is an
inefficient way to observe rare events manifesting by chance.
Closed-course testing can accelerate exposure to known rare
events by setting them up as explicitly designed test scenarios.
(E.g., [20].) Evaluation might be further accelerated by skewing
distributions of test cases toward the more difficult known
scenarios. (E.g., [21].) For example, Waymo uses both closed-

PREPRINT: 2018 SAE World Congress 3

course testing and extensive simulation in addition to its on-
road test program. [4]

Even covering known scenarios can be challenging due to
resource limitations if it exclusively involves the use physical
vehicles. Software-based vehicle simulation can scale up
coverage of test scenarios via running simulations on many
computers in parallel, but inevitably involves a tradeoff of
fidelity vs. run-time cost as well as questions about
completeness and accuracy of software models. Simulation
suffers from the possibility of not simulating unanticipated
scenarios (e.g., unknown safety-relevant rare events).

“Shadow mode” driving [22] and SAE Level 3 autonomy
deployment [6] can increase exposure to real-world driving
scenarios by monitoring a deployed fleet in which human
drivers are responsible for safety. However, there is controversy
as to whether a human driver can effectively supervise safety in
Level 3 systems. [23]

Road testing, closed course testing, simulation, and monitoring
of human-tended systems all have an important place in
demonstrating HAV safety. However, to be both effective and
efficient they should be organized in such a way as to work
together in a complementary fashion. (We recognize that many
HAV developers have sophisticated but proprietary approaches
to validation. In this paper we assume a naïve mileage
accumulation baseline approach to illustrate the issues.)

Simulation Realism for Its Own Sake Is Inefficient

When asking why on-road testing with a real vehicle is better
than simulation, a typical answer is that it is more “realistic.”
Ultimately testing a real vehicle in the real world is important.
But realism for its own sake is an inefficient, and ultimately
unaffordable, use of test resources.

The key to simulation validity is having just the right amount of
realism (simulation fidelity) to get the job done. It has famously
been said that all models are wrong, but some are useful. [24]
Since simulations involve a model of the system, a model of the
environment, and a model of system usage, it follows that no
simulation is perfect.

The level of fidelity in a simulation is the degree to which it
makes simplifications and assumptions about the behavior of
the system. Low-fidelity simulations typically execute quickly
by using simplified representations of systems (sometimes
called reduced-order models), and hence in some sense are
“wrong.” High-fidelity simulations typically are more complex
and are more expensive to execute, but contain with fewer
simplifications and assumptions, and are therefore “less
wrong.” But both types of models can be useful.

The key to improving testing efficiency is realizing that not all
realism is actually useful for all tests. As a simple example,
modeling the coefficient of road surface friction is generally

irrelevant to determining if a computer vision capability can see
a child in the road. (The friction coefficient is likely relevant to
determining if the vehicle can stop in time, but is not relevant
to whether a particular geometric and environmental scenario
will result in detecting a child.) This is true whether testing is
done in software simulation (via modeling different road
surfaces) or with a simulated test track scenario (via sand or ice
on tarmac).

The key to effective and efficient simulation is considering not
only the system being validated, but also the assumptions made
by the various-fidelity models of the system and operational
environments. Accordingly, any practical validation effort
should be considered as a hierarchical series of models of
varying levels of abstraction and fidelity. Viewed this way,
closed-course testing is a form of simulation, because even
though obstacles and vehicles involved might be real, the
scenarios are “simulated.” Validating HAV safety will require
not only ensuring that the HAV system model is sufficiently
accurate, but also validating both the environmental and usage
models used to create test plans and testing simulations.

Clarifying the Goals of Testing

A robust safety validation plan must address at least the
following types of defects that encompass potential faults in the
system, the environment, and system usage:

 Requirements defects: the system is required to do the
wrong thing (defect), is not required to do the right thing
(gap), or has an ODD description gap.

 Design defects: the system fails to meet its safety
requirements (e.g., due to implementation defects), or fails
to respond properly to violations of the defined ODD.

 Testing plan defects: the test plan fails to exercise corner
cases in requirements or design, or has other gaps.

 Robustness problems: invalid inputs or corrupted system
state cause unsafe system behavior or failure (e.g., sensor
noise, component faults, software defects), or an excursion
beyond the ODD due to external forces.

Among the challenges faced by HAV validation are incomplete
requirements and implicit representations of both requirements
and design. Non-deterministic system behavior further
complicates matters. These challenges will of necessity affect
the approach to and goals for system testing. [12] (That
previous paper concentrates on identifying the challenges in
validating autonomy, run-time monitoring approaches, and fail-
operational approaches. We build upon that previous work here
by discussing the pieces of a validation approach.)

In general, difficulties in applying traditional functional safety
approaches to at least some HAV functionality motivates
considering the different possible roles of testing in the overall
safety validation process, as well as handling the issue of
requirements incompleteness.

PREPRINT: 2018 SAE World Congress 4

HAV Requirements Will Be Incomplete

A key challenge for HAV validation is that a complete set of
behavioral requirements needs to be developed before
behavioral correctness can be measured to provide pass/fail
criteria for testing. For example, while efforts are underway to
document vehicle behaviors and scenarios (e.g., the Pegasus
Project [25]), there is not a complete, public set of machine-
interpretable of traffic laws that includes exception handling
rules (e.g., when and how exactly can a vehicle cross a center
dividing line, if present, to avoid a lane obstruction?). We use
the term “requirements” in this paper primarily to refer to
system-level behavioral requirements, although the concepts
can apply in other ways as well.

Requirements gaps are a primary motivation for on-road
vehicle data-gathering operations, which sometimes are loosely
referred to as “vehicle testing.” The general strategy of inferring
system requirements from road test data also affects the
completeness of test plans, in that there will be testing gaps
corresponding to gaps in system behavioral requirements (e.g.,
unknown and therefore missing behavioral scenarios).

It is important to note that, strictly speaking, systems that use
on-road data as the basis for training machine learning do not
ever identify requirements per se. Rather, the training data set
is a proxy for something akin to requirements. [12] In other
cases, analysis of on-road data might be used to construct some
level of explicitly stated requirements. Successfully validating
an HAV requires that test plans capture and exercise the
required behaviors, even if expressed implicitly. Regardless of
the form, these requirements or proxies for requirements are
likely to be incomplete for many initial HAVs deployments.

Vehicle Testing for Debugging Can Be Ineffective

A common view of system-level testing is that it is a way to
discover software defects (“bugs”) and remove them. However,
there is a steep diminishing returns problem for vehicle-level
testing. Once the easy bugs have been found that involve typical
driving scenarios, it can get dramatically more difficult to find
additional defects. This is especially true for defects that require
very precisely specified initial conditions, involve timing race
conditions, or involve recovery from computational run-time
faults that are difficult to induce using ordinary vehicle
interfaces. This problem is even worse in robotics, in which we
have observed that minute variations in lighting and geometry
can trigger unreproducible bugs. In general, it can be expected
that many such subtle bugs will escape detection and diagnosis
during any reasonable amount of vehicle testing, and will be
non-reproducible for practical purposes. However, they will
surely show up in the field in high exposure applications such
as automotive systems.

Beyond an efficiency problem, any project that uses vehicle
testing as its primary mechanism of defect removal has a
fundamental problem in its safety world-view. Testing can

prove the presence of bugs but not their absence. [26]
Moreover, when all the bugs found by test have been fixed, the
bugs that are left are ones that the testing procedures are not
designed to find (the Pesticide Paradox [27]). Thus, even if
vehicle-level testing finds no problems at all, that does not mean
the vehicle’s software is necessarily safe. This line of reasoning
is simply another path to concluding that vehicle-level testing
alone is an untenable approach to proving system safety.

Vehicle Testing as Requirements Discovery

Some forms of “vehicle testing” are actually aimed at
requirements discovery. Examples of areas in which still-
maturing HAV development efforts might well have
requirements gaps include:

 Detecting and evading novel road hazards
 Handling of exceptional situations that require violating

normal traffic rules
 Unusual vehicle configurations, surfaces, and paint jobs
 Misleading but well-formed map data
 Novel road signs and traffic management mechanisms

specific to a micro-location or event
 Unusual road markings and vandalism
 Emergent traffic effects due to HAV behaviors
 Malicious vehicle behavior (humans; compromised HAVs)

While HAV designers should design for known requirements,
continual novel operational “surprises” are inevitable in the real
world for the foreseeable future. A primary rationale for Level
4 automation rather than full Level 5 autonomy is so that the
HAV does not have to handle all possible scenarios. Rather, a
significant feasibility benefit of Level 4 autonomy is that it is
permitted to exhibit a graceful failure when outside its ODD so
long as its failure response is safe. Indeed, it would be no
surprise if Level 5 autonomy remains an elusive goal over the
long term, with Level 4 autonomy asymptotically approaching
– but never actually attaining – complete automation in all
possible operating conditions and scenarios.

It is important to point out that Level 4 autonomy does not
relieve an HAV safety assurance argument from having to deal
with all possible scenarios, including ODD violations and novel
scenarios. The general concept of an ODD seems to assume that
one of the following two situations must be true: (1) there is
some external guarantee that the HAV won’t encounter a
situation it can’t handle well due to a highly reliable ODD
constraint (e.g., robustly predicting kangaroo road hazard
behavior [28] is generally not required on North America public
roadways), and/or (2) the HAV will reliably detect that it is in
a situation outside its ODD and bring the vehicle to a safe state
(e.g., a vehicle not rated for kangaroo road hazards might be
geo-fenced out of a wild animal park and the continent of
Australia). In reality, it is possible that the ODD will be violated
without being detected due to gaps in understanding the full
scope of an ODD (e.g., the designers never considered

PREPRINT: 2018 SAE World Congress 5

kangaroos in the first place), or gaps in the validation plan that
omit testing relevant ODD constraints.

An appropriate use of on-road operation is finding requirements
gaps. Encountering some unexpected scenarios will result in a
requirements update, while others result in a modification either
of ODD parameters or ODD violation detection requirements.
It is important that the HAV be acceptably safe when it first
encounters such an ODD “surprise.” Accomplishing this is
problematic since, by definition, such a scenario is unexpected
and therefore not a designed part of any test plan.

Since no validation approach is perfect, it is likely that some
design defects will escape and be found via road tests, or even
in deployed vehicles. However, this should be a very small
fraction of the total number of defects found in the system, and
those defects should result in safe behavior even if that behavior
does result in a system safety shutdown or other loss of
availability. If an excessive fraction of defects escape detection
during the development cycle and aren’t seen until road testing,
that is indicative of a systemic problem with requirements, test
plan, or some other element of the validation approach. As with
any safety critical design process, defect escapes to production
systems should be cause for a significant response to correct
any safety process problems that contributed to the situation.

Separating Requirements Discovery and Design Testing

A crucial perspective regarding the role of on-road testing is
that accumulating miles in a search for missing requirements
isn’t really “vehicle testing” in the traditional sense at all. It is
a requirements-gathering and validation exercise. On the other
hand, whether on-road data or some combination of simulation,
synthesized data, and recorded data are the primary means for
testing a particular HAV design is more at the discretion of the
design team. So long as the design is validated according to an
adequately complete set of requirements, on-road testing need
not (and in practice should not) be the only testing performed.

Thus, one way to reduce the time and expense of HAV
validation is to separate (1) on-road for requirements gathering
from (2) design and implementation validation. There is no
obvious way around needing billions of miles of on-road
experience to seek out rare but dangerous events that need to be
mitigated by system safety requirements. But that doesn’t mean
that design validation needs to re-do those billions of miles for
every design change – at least if a more sophisticated approach
is taken beyond brute force system-level testing.

Vehicle Testing to Mitigate Residual Risks

We can generalize upon the notion that on-road testing should
primarily emphasize requirements validation, while lower level
simulation and testing should emphasize the validation of
design and implementation. In general, any level of simulation
(including “simulated” aspects of vehicle testing) has a
particular level of fidelity as previously discussed. That means

that it is also “wrong” – just as all models are wrong – in some
aspect due to its simplifications and assumptions.

Improving testing efficiency can be accomplished by focusing
the test plans for each level of fidelity on checking the
assumptions and simplifications of lower-fidelity levels of
simulation. At the same time, pushing as much simulation as
possible to lowest practical level of fidelity will decrease
simulation costs. For example, simple coding defects should be
found in subsystem simulation (or even pre-simulation via
traditional software unit test and peer reviews). On the other
hand, rare event requirements gaps might be best found in on-
road testing if they are due to unforeseeable factors. This leads
to an approach based on mitigating residual risks for each level
of simulation fidelity, as discussed in the following section.

A Layered Residual Risk Approach

Since complete human-interpretable design and requirements
information is unlikely to be available for HAVs in the near
term, some approach other than, or in addition to, the traditional
V model must be used for validation. To do this, we need to
start with at least a (possibly incomplete) set of safety
requirements. Then, we must find a way to trace some
combination of road testing, closed course testing, and
simulation results back to those safety requirements.

Validation According to Safety Requirements

At the highest level, we need some type of system requirements
to be able to determine whether tests actually pass or fail. If
functional requirements are not fully spelled out, then we need
something else. The good news is that optimal performance
may not be needed to provide safety. Rather, simpler
requirements are likely to be sufficient to define safe operation.

For example, we have found that a list of unsafe behaviors that
are forbidden based on safety envelopes can be sufficient for
some autonomous vehicle behaviors. [29] In that case, testing
can be traced to explicitly stated safety requirements even if the
functional requirements themselves are opaque or
undocumented. One way to specify safety envelopes is using
runtime invariants allocated to a distinct safety checker
functional block. [30] As a simple example, a safety envelope
for lane-keeping could be that the vehicle stays within its lane
boundaries plus some safety margin. This is much simpler to
specify and use as a test success oracle than checking perfect
implementation of a complex algorithm that optimizes the
vehicle’s lane position according to road geometry and traffic.

While tracing tests to stated safety requirements can be helpful,
we have found via experience that too often safety requirements
are poorly understood, or not even written down at a useful level
of detail. While a vague notion that mishaps should not occur is
a starting point, there must also be a concrete and specific way
to determine if a test has shown that a system is safe or not. In
practice, we have found that a set of partial runtime invariants

PREPRINT: 2018 SAE World Congress 6

that specifies a combination of safe and unsafe system state
space envelopes can be evolved over time in a continuous
improvement approach in response to the results of testing and
simulation. In other words, one way to approach the problem of
missing safety requirements is to start with simple set of rules
and elaborate them over time in response to tests that violate
those simplistic rules. False positive and false negative rule
violations can drive refinement of the rule set. Generally, this
evolution works best if it starts with an under-approximation of
the safe operating envelope (increasing the high false positive
rate) and progressively adds additional envelope area (and
accompanying test oracle detail) when analysis shows that
doing so is a safe way to increase envelope permissiveness.

If an HAV design team attempts to determine safety
requirements via machine learning-based approaches, it will be
important for them to express the results in a way that is
interpretable to human safety argument reviewers. However, it
is unclear how that might be done. At this point we recommend
using more traditional engineering approaches to defining
safety requirements to avoid the same problem of inscrutability
that befalls ML-based functionality.

Basing Validation on Residual Risks

While a safety envelope approach can simplify the complexity
of creating a model of requirements to use for pass/fail criteria,
HAV testing will still need to run a huge number of scenarios
to attain reasonable coverage. Ideally as much as possible will
be done with comparatively inexpensive, low-fidelity
simulations. Then the approach should add fidelity not just for
the sake of undifferentiated “realism,” but rather for the sake of
reducing the residual risks due to simplifications made by low
fidelity simulations.

Managing Residual Risks

The important relationship between high- and low-fidelity
simulation runs should not be one of “sanity checking” or
statistical sampling, but rather one of emphasizing validating
the correctness of assumptions and simplifications made at
lower fidelity levels. In other words, for each aspect in which a
particular level of fidelity model is “wrong” in some respect, a
higher fidelity simulation (including potentially various types
of physical vehicle testing) should assume the burden of
mitigating that residual safety validation risk.

This approach is different than the usual notion of model
validation in an important way. Higher fidelity levels of
simulation are not only used to validate the correctness of lower
fidelity models, but must also be explicitly designed to
emphasize checks of the assumptions and simplifications that
are known to be present as simulations are run. A primary goal
of a higher fidelity model should be to mitigate that residual risk
by not only checking the accuracy of lower fidelity simulation
results, but also by checking whether assumptions made by
lower fidelity models are violated when the higher fidelity

simulation is performed. As a simple example, if a simplified
model assumes 80% of radar pulses detect a target, a higher
fidelity model or vehicle test should flag a fault if only 75% of
pulses detect a target – even if the vehicle happens to perform
safely according to the higher fidelity model. The assumption
of 80% detection rates is a residual risk of the lower fidelity
simulation that makes that assumption. Violating that
assumption invalidates the safety argument, even if a particular
test scenario happens to get lucky and avoid a mishap.

This approach fundamentally affects the design of a simulation
and test campaign. For example, consider a simulation that
explores obstacle placements across the field of view. The
simulation arranges obstacles in the environment with very
precise resolution, but uses only crude stick-figure simulated
pedestrian objects in static positions at a fixed orientation.
Doing thousands of additional high-fidelity vehicle tests while
varying obstacle placement would be expected to yield a low
marginal validation benefit over exhaustive simulation results,
especially if the simulation exercises the actual geometry
processing code that will be deployed in the HAV. That is
because in this example obstacle placement relative to the
vehicle is not the primary source of residual risk after
simulations are completed. The main residual risk revolves
around the pedestrians. The low-fidelity simulation assumes
stick figure people, thereby omitting consideration of people
carrying large objects, people wearing clothing that
significantly distorts sensor signals, different rotational
positions with regard to vehicle sensors, and so on.

By the same token, any improvement of simulation capability
should not merely strive to make the simulation higher fidelity
in every possible dimension. For example, modeling road
obstacle placement down to the nanometer rather than the
millimeter is not likely to be a generally productive use of
simulation resources. Rather, simulation fidelity improvements
should be made to replace required system level tests with
simulations (e.g., adding surface texture capability as well as a
wider variety of geometrical shapes and orientations for the
previous stick figure example).

This does not mean that simulation model verification and
validation (e.g., as described in [31]) should be neglected.
Rather, the point is that even a perfectly validated model at a
particular level of abstraction leaves residual risk. Part of the
risk is because of the possibility of an incomplete testing
campaign, which amounts to not fully mitigating risks inherited
from lower fidelity simulation or not fully covering the areas
assigned to the level of fidelity in question. Another part of the
risk is due to safety considerations that have been intentionally
excluded at a particular level of abstraction, which corresponds
to risks passed up the line to the next higher level of fidelity.

Thus, the time-honored approach of using runs of varied
simulation fidelity [32] still makes sense for HAVs. The art is
in making sure that simplifications in lower fidelity tests are
explicitly managed and mitigated as validation risks.

PREPRINT: 2018 SAE World Congress 7

The approach of accelerated evaluation via biasing tests
towards difficult scenarios [21] is complementary to a residual
risk approach. Emphasizing difficult scenarios is intended to
winnow redundant nominal path tests from the test set while
still covering off-nominal behaviors, edge cases, and complex
environmental interactions. On the other hand, residual risk
mitigation addresses the potential problem of risks due to
simplifications and unchecked assumptions made by lower
fidelity layers of a simulation and testing plan.

An Example of Residual Risks

Table 1 shows a simplified example of residual risks that should
be considered with an HAV testing and simulation plan. The
residual risks at the top of the table tend toward requirements
gaps (unexpected scenarios and unexpected environmental
conditions). In comparison, the other residual risks tend toward
a combination of simplifications driven by speed/fidelity
simulation tradeoffs (e.g., sensor data quality) at the mid-level,
and potential design issues (e.g., subsystem interactions) at the
lowest level.

Validation Activity Residual Risks (Threats to Validity)

Pre-deployment
road tests

Unexpected scenarios, environment

Closed course
testing

As above, plus: Unexpected human driver
behavior, degraded infrastructure, road
hazards

Full vehicle &
environment
simulation

As above, plus: simulation inaccuracies,
simulation simplifications (e.g., road
friction, sensor noise, actuator noise)

Simplified vehicle
& environment
simulation

As above, plus: inaccurate vehicle
dynamics, simplified sensor data quality
(texture, reflection, shadows), simplified
actuator effects (control loop time
constants)

Subsystem
simulation

As above, plus: subsystem interactions

Table 1. Hypothetical validation activities and threats to
validity.

Revisiting the previous obstacle detection example, this means
that higher fidelity levels such as physical vehicle testing should
not primarily focus on different sizes and placement of
obstacles. Rather, they should focus on things such as dirt on
objects and sensors, and other aspects that might not be handled
by software-only simulation tools. In other words, vehicle
testing should mostly concentrate not on reproducing
simulation results, but rather on challenging any known weak
points of the simulation methodology. Specifics will vary. The
point is that all simulation tools have limitations of some sort
that require further validation efforts.

For the example shown in Table 1, closed course testing should
not focus on unexpected human driver behavior, degraded
infrastructure, or road hazards, because mitigating those threats

is the primary reason to do pre-deployment road tests. Expected
behaviors, road hazards, and so on should be handled with
testing and simulation. It is unexpected problems that can’t be
addressed, because an unexpected problem is by definition not
something that can be explicitly included in a test plan.

It is important to avoid burdening higher level system testing
with addressing risks that should properly be dealt with at lower
levels. Continuing the example, closed-course testing should
not be significantly concerned with normal vehicle dynamics,
and ordinary issues of sensor data quality and actuator effects,
since those can be taken care of with software-based simulation.
Vehicle testing should also not be used to brute force test
obstacle placement and geometries that can more be dealt with
in a more cost-efficient way with simplified vehicle and
environment simulation that exercises just the vehicle’s
obstacle-handling code. Prototyping tests with a real vehicle on
a closed course might make sense when validating the
simulation capability. But executing the actual vehicle testing
campaign should be done at the lowest practical level of
simulation fidelity for each aspect of the test plan as much as
possible to reduce time and costs.

The overarching idea is that the primary emphasis in each level
of validation should be on residual risks inherited from the next
lower level, especially when re-running existing simulation test
suites on a system that has been modified so as to ensure that
the system is still safe. Extensive sampling to exhaustively
replicate the results of lower fidelity simulation and testing is
wasteful at best, and at worst gives a false sense of security if
the random sampling does not cover residual risks.

Improving Observability

Given a thorough simulation- and vehicle-based test plan,
sufficient controllability and observability must be provided to
yield a credible safety validation outcome.

Controllability and Observability

Controllability is the ability of a tester to control the initial state
and the workload executed by a system under test.
Observability is the ability of the tester to observe the state of
the system to determine whether a test passed or failed. [33]

Controlling test scenarios to elicit a particular autonomous
system behavior is difficult. [12] This is due to a combination
of the use of stochastic methods (e.g., randomized path
planners), sensitivity to initial conditions (e.g., exactly
repeatable sensor alignment within a test environment),
variability in actuator outputs (e.g., unexpected variations in
environmental interactions with actuators), and computational
timing variations.

A useful approach to improving controllability is to use
simulation that can avoid physical world randomness and
constraints. Beyond that, a system testing interface can be

PREPRINT: 2018 SAE World Congress 8

provided that forces the system into an initial state for testing.
For example, a path planner might be tested in a repeatable
manner if its internal pseudo-random number generator can be
set to a predetermined seed value. As a practical matter,
deterministic testing requires that the HAV software be
intentionally designed to provide a deterministic testing
capability. It can be difficult to mitigate sources of non-
determinism in software after it has been constructed.

Observability can be a more difficult problem. For example, in
a vehicle-level obstacle test the vehicle either leaves sufficient
clearance as it passes an obstacle or it does not. But, even if the
system “passes” a test by not colliding, that could simply be due
to the system getting lucky in avoiding an obstacle it did not
even know was there. The system might hit the obstacle on the
next test run – or perhaps hit it 2000 test runs later. This lack of
observability is one facet of the robot legibility problem, which
recognizes the difficulty of humans understanding the design,
operation, and “intent” of a robotic system. [34] (The additional
role of legibility in HAV interaction with human drivers is an
important one, but beyond the scope of this paper.)

While one can argue that it is unlikely a system will repeatedly
pass tests by dumb luck, the sheer number of test parameters
involved makes the “repeatedly” part of that argument
expensive. And, regardless of how many tests are run, it is
difficult to achieve an extreme level of statistical significance
via testing for life-critical assurance levels. (Even a 99.99%
confidence level for a system avoiding a detected child in a
crosswalk seems problematic if it could result in one out of
10,000 children being hit.) Thus, there will always be a residual
risk that some combinations of scenario elements pass tests
repeatedly due to a lucky streak rather than due to a safe design.

Software Test Points

Rather than relying only upon system-level behavior and brute
force repetition to determine if a test passes, a more efficient
testing approach can be to insert software test points into the
system to improve observability. For example, if sensor fusion
dependability is a residual risk due to simulation limitations, a
relevant test point for closed course vehicle simulation would
be monitoring the computed certainty level of a sensor fusion
results. That would provide information about whether a test
obstacle is being avoided with the intended margin of error
rather than by luck. (The issue of software test points potentially
disturbing the system under test can be resolved by architecting
test points in as a permanent part of the system. This will in turn
facilitate data collection in the deployed system.)

Software test points also facilitate monitoring for safety
argument assumption violations during fleet deployment. The
previously discussed 80% detection rate assumption example
can be monitored not only during testing, but also during full
scale vehicle deployment to detect assumption violation
escapes into fielded systems.

Passing Tests for the Right Reason

When a human takes a driver test, the test examiner has a fairly
accurate (or at least useful) mental model of the driver behind
the wheel. If the driver changes lanes without making eye
contact with a rear-view mirror or otherwise checking for
vehicles in the destination lane, the examiner knows that the
driver got lucky in executing a collision-free lane change
instead of behaving properly. With an HAV, this type of
assessment is more difficult, because it is unclear what the
“tells” are for a machine exhibiting safe behavior vs. getting
lucky with unsafe behavior. That is especially true if
requirements and design are not traceable via a V-based safety
process.

If HAV safety is to be based in part on a driving-test type event,
then the examiner must know that the HAV not only behaves
the right way, but also behaves the right way for the right
reason. Even without a formal driver test, being able to
reasonably infer causality of actions from explicit system
information can reduce testing costs compared to a brute force
statistical approach. Having an HAV self-report regions of
saliency [35], bounding boxes on objects, and so on is not a new
idea. However, explicitly including such capabilities in a safety
argument can reduce testing cost if exploited in the right way.
This may motivate further work to verify that self-reporting and
explainability mechanisms work reliably.

One way to couple scenarios with behaviors is to have the HAV
self-report the scenario it thinks it is in, or the various scenario
elements that it thinks are in play. As an example, rather than
just performing a vehicle lane change when it can, the vehicle
might report: “I want to change lanes … I am checking the next
lane and there is a car there but it is sufficiently far behind me
that I am clear … I am starting to change lanes … I am
continuing to monitor that the lane is still clear ... the car behind
me is speeding up to close the gap …” and so on. Some HAV
architectures might provide this level of observability already.
The question is how formally such information is used by the
validation strategy. Moreover, many popular approaches (e.g.,
end-to-end deep learning) explicitly eschew architectural
modularity, which tends to degrade observability. They do so
with the goal of achieving higher performance, a tighter
implementation, and less development effort. [36] Lack of
observability has the potential to exact a high price in terms of
validation effort or deployment risk for such systems.

An effective driving test should require not only correct
behavior, but also a correct introspective narrative of why the
HAV is acting the way it is. That is a good start, but we must
then must question the integrity of a machine’s explanation for
its actions. However, we argue that deciding whether to trust an
explicit explanation is an easier to solve problem than having to
infer (and then trust) an opaque implicit explanation via
behavioral observation. Either way, a decision must be made
about whether the vehicle will do the right thing in future
circumstances that are not exact matches to training and test
data sets. The advantage of an explicit explanation is that the

PREPRINT: 2018 SAE World Congress 9

validity of that mechanism can be made falsifiable if it is
required to match the test plan narrative. In designing safety-
critical systems, we prefer explicit, verifiable, simple patterns
that might be less performant over those that are highly-
optimized but opaque. We have reason to believe this trend will
hold for HAVs when considering the consequences of
attempting to deploy difficult-to-validate systems.

Architecting such a system will require introducing or
identifying observability for the purpose of validation. This
might be accomplished by having a tool that converts existing
data to human-interpretable form, adding a test point to the
system architecture, or re-architecting the system to
intentionally create new forms of human-interpretable data.
(Figure 1)

Figure 1. System validation should determine that the system

does the right thing for the right reason.

For machine learning systems, this approach suggests a
somewhat unusual design strategy. Rather than having an ML
system learn its own feature set for achieving an outcome, it
must meet two concurrent goals: (1) display the right behavior,
and (2) display a set of narrative descriptions or other
explanation that matches its behavior. One way to accomplish
this is to use models of environments and usage scenarios to
define the set of ML outputs that must be learned. While this
might be seen as additional design burden and overhead, such
might be the price for being able to know whether a vehicle is
actually safe enough to deploy.

To avoid a mismatch between behavior and narrative, one
possibility is to arrange the ML system so that it operates in two
disjoint phases: first creating the narrative, and then using the
narrative as inputs for its behavior, as shown in Figure 1. The

first phase might build on existing work on creating
descriptions of scenarios and hierarchical classification. (E.g.,
[37][38].) The system actuation should be responsive to the
narrative by having the second stage be fully dependent upon
the outputs of the first stage. This dependency mitigates the risk
of a parallel narrative construction being generated that does not
actually match the system’s actuation strategy.

Coping with Uncertainty

Knowns and Unknowns

Even with a validated and apparently defect-free system, there
is still residual risk from problems due to incomplete
understanding of the system and its requirements. These include
at least the following potential types of issues:

 Emergent system properties and interactions that are not
accounted for at the appropriate validation phase

 Unexpected correlated faults in areas for which safety
depends upon implicit independence assumptions

 Scenario and environment exceptions that happen too
infrequently to be diagnosed by pre-deployment road tests

 Uncertainty as to the arrival rates of unmitigated hazards
that were assumed to be extremely infrequent

 In-range system inputs that activate unexpected defects in
ML-based components

There are doubtless other types of defects that are not listed
above and are not included in at least some HAV validation
plans. Those are the famous “unknown unknowns” [39] that can
compromise safety and cause other system failures.

Dealing with Unknown Defects

While approaches such as safety envelopes can help, in the end,
there is no way to completely mitigate residual risks from
unknown types of defects. However, the arrival of unexpected
faults can be monitored to increase confidence over time that
the residual risk is sufficiently low. It is essential to recognize
unknown problems as a residual risk that must be monitored
and mitigated as necessary throughout the life of the fleet. A
confidence assessment framework [40] that has been extended
to include unknown unknowns is one approach that could
provide a way to manage residual risks.

Each time a surprise causes a safety problem, additional steps
should be taken to address underlying system and safety
argument assumptions that are invalidated by the newly
discovered issue (this is in accordance with existing safety
practices, e.g., [8]). It is important to do a root-cause analysis
of unexpected faults to at least determine if a problem is a
known unknown (in which case now you know more about it),
or an unknown unknown (in which case you need to add a
category of defect type to your validation plan and safety
argument to address this new unexpected source of problems).

PREPRINT: 2018 SAE World Congress 10

HAV Maturity

There is substantial intuitive appeal to having a “driving test”
as part of HAV validation. However, the analogy of taking an
HAV out for a road test similar to a human driving test falls
short because there are actually two key elements to a human
driving test. The first element is the obvious, overt requirement
that the driver must show basic driving knowledge and
proficiency, including a driving skills test.

The second and more subtle part of passing a driving exam is
that the driver must be approximately 16 years old, depending
upon locale. That age requirement serves as a proxy for having
reasonably mature judgment that can handle exceptional
situations and generally behave in a reasonable manner when
encountering a novel unstructured situation. In the real world,
correct vehicle operation depends in part upon traffic
regulations. However, it also depends upon whether a police
officer expertly, though subjectively, thinks the driver behaved
in a reasonable and responsible manner for a given situation.
(“Plays well with others” is an important HAV characteristic,
especially in mixed human/HAV traffic.)

While it is possible (some say certain) that HAV behavior can
be safer than a person given human frailties, how to measure
HAV “maturity” to ensure that this desirable outcome is fully
achieved remains an open question.

One way to measure HAV maturity is to deploy vehicles and
see how they do. That is one of the arguments for deploying
SAE Level 3 automation, which in effect uses a human in the
role of an adult supervisor who monitors the junior driver
during learner’s permit operation. However, there are legitimate
concerns that driver supervision will be ineffective over long
periods of exposure due to driver dropout, especially when
automation fails infrequently. [41]

We propose two different approaches for evaluating HAV
maturity beyond developer adherence traditional safety critical
software engineering principles. The first way is ensuring that
the HAV passes a detailed technical driving skill test for the
right reasons, and the second way is monitoring whether the
HAV validation assumptions and residual risk monitoring hold
up when it is deployed in the real world. In other words, the
system design might be considered to be mature if the vehicle
can explain its behavior in a way that makes sense to a human
and its safety case assumptions hold true in operation.

HAV Probation: Monitoring Assumptions

Any responsible decision to deploy an HAV must be more
sophisticated than simply saying “we fixed all the bugs we
found so we must be perfect,” because that is never a reflection
of reality. There is always one more bug. [42] Rather, a safety
argument based on phased validation should at least be made
based on measuring rates of defect escapes from each phase of
validation. This argues that observability test points should be

retained and monitored all the way through to fleet deployment.
Doing so permits monitoring system design maturity by
ensuring that there are no vehicle operational situations that
invalidate assumptions. If a high rate of assumption violations
is detected by runtime monitoring, that can provide valuable
feedback to the design team of an impaired safety margin. In
this manner, issues with the safety argument can be identified
even if no actual mishaps have occurred.

As another example beyond the previously discussed
assumption violation example, consider the somewhat
controversial topic of disengagement reports for HAV road
testing. [23] Clearly, not all disengagements are created equal,
especially given that various teams are likely to have different
false positive rates for triggering disengagements.

Using an approach such as Orthogonal Defect Classification
(ODC) [43] might reveal, for example, that some
disengagements are due to problems that should have been
caught in subsystem simulation, while other disengagements
are due to the discovery of a requirement or scenario gap at the
highest level. While one expects that HAV development teams
do some sort of analysis on disengagements, a methodical
analysis that maps defects back to residual risks identified in a
validation plan has significant potential benefits, such as
providing a health indication for the safety argument and the
HAV’s overall maturity level.

This approach can support an external assessment of autonomy
validation by presenting a well-reasoned set of risk mitigation
goals for each phase of validation. Those can be paired with
data on defect escapes as measured by relevant observability
points during simulation, vehicle testing, and deployment. All
this implies that the “driver test” is not actually a one-time
event, but rather involves a continual “license” renewal process
based on collecting and analyzing field data on defect escapes
over the life of the system.

Deploying with Residual Risks

It is important to acknowledge that this discussion has
contemplated fielding HAVs that have residual risks, and in
particular, potential gaps in requirements and design
verification. This is inherent to the domain and the technology
being deployed. It will be some time before statistically
defensible amounts of data are accumulated to argue that the
residual risks fall below the usual safety critical system safety
thresholds (for example, below one catastrophic vehicle mishap
per 109 or 1010 operational hours). Given the current HAV
market and regulatory climate, it seems likely that public
deployment will scale up before such data is collected.

Regardless of the appeal of fielding HAVs, is essential that the
deployment be done in a responsible manner. In particular,
residual risks should not be accepted blindly. Rather, residual
validation risks at all levels should be explicitly understood as
well as monitored during deployment. As an example, credible
arguments that a particular category of residual risk is likely to

PREPRINT: 2018 SAE World Congress 11

result in low consequence, highly survivable, or extremely
infrequent mishaps might be a legitimate motivation to
determine they are “acceptable” even if the full extent of the
risk is unclear. However, any such argument should be
supported by monitoring field feedback data to determine if the
assumptions that support the acceptance of such risks are
actually true, preferably without waiting for an accumulation of
serious loss events.

Ultimately ethical issues arise, such as whether it is better to
deploy imperfect technology if there is an expected net savings
of life. [44] Safety professionals in particular face a pragmatic
choice as to whether they participate in a release of a safety-
critical system with unknown (and unknowable, in the short
term) but safety risks, or they miss an opportunity to improve
the relative safety of HAVs that are bound to be deployed with
or without their help. A goal of this paper is to provide a
framework for validating such systems before they are
deployed that will improve the developers’ ability to identify
and manage accepted risks.

Conclusions

Summarizing, we describe an approach to HAV validation that
includes the following elements:

 A phased simulation and testing approach that emphasizes
testing to mitigate residual validation risks from the
previous phase while exploiting the speed vs. fidelity
scalability properties inherent in testing and simulation.

 Observability points to produce human-interpretable data
that both detect defect escapes from lower fidelity
simulation phases and demonstrate the system is doing the
right thing for the right reason.

 Explicit differentiation of the various roles of testing from
checking for requirements gaps to checking for design
faults, and matching each type of testing with a relevant
portion of a phased validation approach.

 A run-time monitoring approach to managing identified
risks, catching assumption violations and unknown
unknowns as they arise in fielded systems.

This approach can be expected improve validation effectiveness
compared to a brute-force testing campaign because it explicitly
links testing and simulation activities to the risks being
mitigated. This in turn permits concentrating effort on the sweet
spot of defect detection for each particular level of simulation
and test fidelity. The approach can also be expected to improve
testing efficiency by concentrating each phase of testing on
mitigating risks inherited from the preceding phase, without
wasting resources revisiting low-risk conclusions or attempting
to address out-of-scope risks that belong to other testing phases.
(Other forms of validation beyond testing are also important,
such as employing ISO 26262 approaches to appropriate
portions of system functionality.)

We recognize that, due to the challenges of conclusively
establishing the safety of machine-learning functions, the
approach presented here will yield an ongoing process of
iterative improvement rather than air-tight proofs of safety.
However, the approach will serve to underscore where
assumptions are being made, and where safety case evidence is
missing. One way of validating the approach as well as the
system is to create a Goal Structuring Notation-organized safety
case (e.g., starting with [45]) and including explicitly stated
assumptions to complete the argument. Each assumption
identifies the residual risks for a testing or simulation technique.
Assumptions that are checked by other validation approaches
form part of the safety argument chain. Assumptions that can’t
be validated at design time are residual risks that are especially
important candidates for run-time monitoring in deployed
systems.

At some point, designers will have to decide on a responsible
deployment plan that might involve taking risks that are judged
to be acceptable according some defensible set of technical and
social criteria. To minimize unmitigated residual risks, we
suggest avoiding architectures in which autonomy that can’t be
validated using traditional safety approaches is the sole means
of ensuring operational safety. One alternative is using a safety
checker that can be rated appropriately according to ISO26262,
such as a safety envelope monitor. [46]

While it is always better to ensure that all residual risks are
known and mitigated to an acceptable level, it is clear that
HAVs are going to be deployed even if there are places in which
the safety argument contains risks that are not completely
understood. The approach discussed in this paper provides a
framework for establishing an initial safety argument based on
multiple levels of simulation and testing fidelity. It also
provides hooks for continuous improvement based on
monitoring assumption violations and other residual validation
risks during the course of testing and deployment.

Our next steps are refining techniques for establishing
traceability from safety requirements to test and simulation
plans, and applying this approach to at-scale validation
activities.

References

[1] Koopman, P. & Wagner, M., "Autonomous Vehicle Safety: An
Interdisciplinary Challenge," IEEE Intelligent Transportation
Systems Magazine, Vol. 9 #1, Spring 2017, pp. 90-96.

[2] NHTSA, Automated Driving Systems: a vision for safety, US Dept.
of Transportation, DOT HS 812 442, Sept. 2017.

[3] Carson, B., “Uber’s self-driving cars hit 2 million miles as program
regains momentum.” Forbes, Dec. 22, 2017.

[4] Waymo, On the Road to Fully Self-Driving: Waymo safety report,
2017. https://goo.gl/7HUiew

[5] General Motors, 2018 Self-Driving Safety Report, 2018.
https://goo.gl/ruLJvV

PREPRINT: 2018 SAE World Congress 12

[6] SAE, Automated Driving (from SAE J3016),
http://www.sae.org/misc/pdfs/automated_driving.pdf accessed
10/13/2017.

[7] Wagner & Koopman, "A Philosophy for Developing Trust in Self-
Driving Cars," In: G. Meyer & S. Beiker (eds.) Road Vehicle
Automation 2, Lecture Notes in Mobility, Springer, 2015, pp.
163-170.

[8] Road vehicles -- Functional Safety -- Management of functional
safety, ISO 26262, 2011.

[9] Road vehicles – Safety of the Intended Functionality, ISO/WD
PAS 21448. Under development.

[10] Salay, R., Queioz, R., & Czarnecki, K., “An analysis of ISO
26262: Using Machine Learning Safely in Automotive
Software,” https://arxiv.org/pdf/1709.02435.pdf

[11] Dosovitskiy, A., & T. Brox, “Inverting convolutional networks
with convolutional networks,” CoRR, vol. abs/1506.02753, 2015.

[12] Koopman, P. and Wagner, M., "Challenges in Autonomous
Vehicle Testing and Validation," SAE Int. J. Trans. Safety
4(1):2016.

[13] Urmson, C. et al., “Autonomous driving in urban environments:
Boss and the Urban Challenge,” Journal of Field Robotics, 2008,
pp. 425-466, DOI 10.1002/rob.

[14] Levinson et al., “Towards fully autonomous driving: systems and
algorithms,” IEEE Intelligent Vehicles Symp., June 5-9, 2011, pp.
163-168.

[15] Broggi et al., “Extensive tests of autonomous driving
technologies,” IEEE Trans. Intelligent Transportation Systems,
14(3), Sept. 2013, pp. 1403-1415.

[16] Ziegler, J., et al., “Making Bertha drive – an autonomous journey
on a historic route,” IEEE Intelligent Transportation Systems
Magazine, Summer 2014, pp. 8-20.

[17] Aeberhard, M., et al., “Experience, results and lessons learned
from automated driving on Germany’s highways,” IEEE
Intelligent Transportation Systems Magazine, Spring 2015, pp.
42-57.

[18] Kalra, N. & Paddock, S., Driving to Safety: how many miles of
driving would it take to demonstrate autonomous vehicle
reliability? Rand Corporation, RR-1479-RC, 2016.

[19] Butler & Finelli, “The infeasibility of experimental quantification
of life-critical software reliability,” IEEE Trans. SW Engr.
19(1):3-12, Jan 1993.

[20] Madrigal, A., Inside Waymo’s secret world for Training self-
driving cars, The Atlantic, Aug. 23, 2017.

[21] Ding, Z., “Accelerated evaluation of automated vehicles,”
http://www-personal.umich.edu/~zhaoding/accelerated-
evaluation.html on 10/15/2017.

[22] Golson, J., Tesla’s new autopilot will run in “shadow mode” to
prove that it’s safer than human driving, The Verge, Oct, 19,
2016.

[23] Davies, A., The very human problem blocking the path to self-
driving cars, Wired, Jan 1, 2017.

[24] Box, G., "Robustness in the strategy of scientific model building",
MRC Technical Summary Report #1954, University of
Wisconsin-Madison, 1979.

[25] Putz, A., Zlocki, A., Bock, J. & Eckstein, L., “System validation
of highly automated vehicles with a database of relevant traffic

scenarios,” 12th ITS European Congress, Strasbourg, June 19-22,
2017.

[26] Bustcon, J., & Randell, B., (Eds.) Software Engineering
Techniques: report on a conference sponsored by the NATO
Science Committee, April 1970.

[27] Beizer, B., Black-Box Testing: Techniques for functional testing
of software and systems, Wiley, 1995.

[28] Zhou, N., “Volvo admits its self-driving cars are confused by
kangaroos,” The Guardian, June 30, 2017. https://goo.gl/jgA7Ck

[29] Koopman, P., "Challenges in Autonomous Vehicle Validation,"
SCAV 17, April 2017.

[30] Kane, Chowdhury, Datta & Koopman, "A Case Study on Runtime
Monitoring of an Autonomous Research Vehicle (ARV) System,"
RV 2015.

[31] Sargent, R., “Verifying and Validating Simulation Models,” 2014
Winter Simulation Conference, pp. 118-131.

[32] Law, A. & Kelton, W.D., Simulation Modeling and Analysis, 3rd
ed., McGraw Hill, 2000.

[33] Freedman, R., Testability of software components, IEEE Trans.
Software Engineering, June 1991, pp. 553-564.

[34] Dragan, A., Lee, K. & Srinivasa, S., “Legibility and predictability
of robot motion,” Human-Robot Interaction (HRI) 2013, pp. 301-
308.

[35] M. Bojarski et al., “VisualBackProp: efficient visualization of
CNNs”, arXiv:1611.05418v3

[36] M. Bojarski et al., “End to End Learning for Self-Driving Cars”,
arXiv:1604.07316v1

[37] Wang, Y., Lin, Z., Shen, X., Cohen, S. & Cottrell, G., “Skeleton
Key: image captioning by skeleton-attribute decomposition,”
arXiv preprint arXiv:1704.06972

[38] Redmon, J. & Farhadi, A., “YOLO9000: Better, Faster, Stronger,”
https://arxiv.org/pdf/1612.08242.pdf

[39] Morris, E., “The Certainty of Donald Rumsfeld (Part 2),” NY
Times, 26 March 2014, https://goo.gl/Pv7SB7.

[40] Wang, R., Guiochet, J. & Motet, G., “Confidence assessment
framework for safety arguments,” SAFECOMP 2017, pp. 55-68.

[41] Casner, S., Hutchins, E., & Norman, D., The Challenges of
Partially Automated Driving, Comm. ACM, May 2016, pp. 70-
77.

[42] Leveson, An investigation of the Therac-25 Accidents, IEEE
Computer, July 1993, pp. 18-41.

[43] M. Sullivan, R. Chillarege, "Software Defects and their Impact on
System Availability A Study of Field Failures in Operating
Systems," FTCS-21, 1991.

[44] Kalra, N. & Groves, D., The Enemy of Good: estimating the cost
of waiting for nearly perfect automated vehicles, Rand
Corporation, RR-2150-RC, 2017

[45] Burton, S., “Making the case for safety of machine learning in
highly automated driving,” SAFECOMP, Sept. 2017, pp. 5-16.

[46] Kane, Fuhrman, Koopman, "Monitor Based Oracles for Cyber-
Physical System Testing," DSN 2014.

PREPRINT: 2018 SAE World Congress 13

Contact Information

Dr. Philip Koopman is an Associate Professor of Electrical and
Computer Engineering at Carnegie Mellon University, where he
specializes in software safety and dependable system design. He also
has affiliations with the Carnegie Mellon University Robotics Institute,
National Robotics Engineering Center (NREC) and the Institute for
Software Research. He is CTO and co-founder of Edge Case Research,
LLC. E-mail: koopman@cmu.edu

Michael Wagner is CEO and co-founder of Edge Case Research, LLC,
which specializes in software robustness testing and high-quality
software for autonomous vehicles, robots, and embedded systems. He
is also affiliated with the National Robotics Engineering Center. E-
mail: mwagner@edge-case-research.com

Definitions/Abbreviations

HAV Highly Automated Vehicle

ODD Operational Design Domain

NHTSA National Highway Traffic
Safety Administration

SOTIF Safety Of The Intended
Functionality

V model A software development
model that includes
requirements and design on
the left side of a “V” with
verification and validation on
the right side of the “V”

