

Flexible Multicast Authentication for Time-Triggered Embedded Control
Network Applications

Christopher Szilagyi

ECE Department
Carnegie Mellon University

szilagyi@cmu.edu

Philip Koopman
ECE Department

Carnegie Mellon University
koopman@cmu.edu

Abstract

Security for wired embedded networks is becoming
a greater concern as connectivity to the outside world
increases. Protocols used in these networks omit sup-
port for authenticating messages to prevent masquer-
ade and replay attacks. The unique constraints of em-
bedded control systems make incorporating existing
multicast authentication schemes impractical. Our
approach provides multicast authentication for time-
triggered applications by validating truncated message
authentication codes (MACs) across multiple packets.
We extend this approach to tolerate occasional invalid
MACs, analyze our approach through simulated at-
tacks, and give an upper bound on the probability of
successful attack. This approach allows a tradeoff
among per-packet authentication cost, application
level latency, tolerance to invalid MACs, and probabil-
ity of induced failure, while satisfying typical embed-
ded system constraints.

1. Introduction

Distributed embedded systems employing wired net-
works have numerous potential vulnerabilities. Anyone
with physical access to the system, including the
owner, can perform an attack to manipulate message
traffic on the internal network. Increasing connectivity
to external networks, such as the Internet or wireless
networks, can also make wired embedded networks
susceptible to attacks originating from those external
networks, making security a more significant consid-
eration in embedded control system design [14].
 If an attacker can gain control over one of the nodes
connected to a system, either through physical tamper-
ing or remotely subverting a gateway node, they gain
access to the potentially safety-critical internal bus
traffic of these systems. An attacker can eavesdrop on
traffic, inject and modify messages, and can even per-
form DoS attacks [29]. By accessing this internal traf-
fic, the attacker might, for example, engage the emer-
gency brake in a car while it is traveling on a highway,
unlock doors and start the engine, or shut off head-

lights while traveling at night.
 Embedded control networks commonly use proto-
cols such as Controller Area Network (CAN) [3],
FlexRay [1], and Time-Triggered Protocol (TTP) [16].
Applications include distributed automotive, aviation,
robotics, and industrial control systems. Safety, reli-
ability, and cost have traditionally been the primary
concerns in these systems, with security a minor con-
cern. Most embedded control networks do not have any
built in security to support authenticating nodes, en-
crypting data, restricting message types a node can
send, or preventing Denial of Service (DoS) attacks.
 In this paper, we expand upon our approach for au-
thentication in time-triggered applications [28] which
prevents both masquerade and replay attacks. Mas-
querade attacks [27] occur when a node sends a mes-
sage in which it claims to be a node other than itself.
This attack can be performed by broadcasting during
another node's Time Division Multiple Access
(TDMA) slot or by changing a message identifier
value. Replay attacks [27] occur when a previously
sent message is recorded and retransmitted by an at-
tacker. Authentication allows a receiver to confirm the
identity of a sender, typically via cryptographic
mechanisms such as a Message Authentication Code
(MAC) or a Digital Signature [27]. While wired em-
bedded network protocols use error detection codes to
verify message integrity, these codes can readily be
forged, and are no substitute for strong cryptographic
mechanisms.
 Our previous work [28] provides multicast authenti-
cation in a single-hop wired embedded network, using
truncated MACs. Truncating MACs allows the sender
to place one small authenticator field per receiver in
each message to allow authentication on a per-packet
basis and provide tolerance to lost messages. It takes
advantage of the time-triggered nature of many em-
bedded control systems to authenticate a series of
packets with consistent message values to gain confi-
dence in both state-changing and reactive control mes-
sages. In this paper, we extend our approach to tolerate
occasional invalid MACs (malicious and non-
malicious) which could disrupt authentication of state-

1

koopman
Typewritten Text
Preprint from 2009 International Conference on Dependable Systems and Networks (DSN09)

changing messages. We also investigate cases where
forging nonconsecutive reactive control messages
within a period of time might lead to a successful at-
tack. Finally, we provide analysis and experimental
verification of the probability of maliciously induced
failures for our approach.
 In this paper Section 2 describes common wired
embedded network constraints. Section 3 discusses
multicast authentication using one MAC per receiver.
Section 4 reviews related work. Section 5 describes our
approach for authentication and Section 6 contains our
analysis of the approach. Finally, Section 7 presents
our conclusions.

2. Embedded network constraints

Distributed embedded networks are composed of a
number of hardware Electronic Control Units (ECUs).
These ECUs communicate via a network using a pro-
tocol such as CAN, FlexRay, or TTP to accomplish
time-triggered communications. These protocols are
among the most capable of those currently in use in
wired embedded system networks. Many other proto-
cols are even more resource constrained, but have gen-
erally similar requirements. We assume that embedded
networks exhibit the following characteristics:
 Time-triggered - In this paper, we consider only
time-triggered applications. [15] defines a real-time
system as time-triggered if all communications and
processing activities are initiated at predetermined
points in time from an a priori designated clock tick.
Each node periodically broadcasts current values of
state variables and sensor inputs to the rest of the net-
work at designated times.
 Multicast communications - Most distributed em-
bedded networks are inherently multicast. All nodes
connected to the network receive every packet. (In
CAN, hardware performs message filtering at the re-
ceiver based on content.) Each packet includes the
sender's identity, often implicitly through a message
identifier (CAN; FlexRay) or time slot (TTP), but usu-
ally no explicit destination information. The configura-
tion of the network is usually fixed at design time, with
little or no run-time reconfiguration. Usually only a
few nodes are attached to any network (commonly 32
or fewer).
 Resource limited nodes - Processing and storage
capabilities of nodes are often limited due to cost con-
siderations. For example, the S12XD series, produced
by Freescale [2], is a family of 16-bit microcontrollers
designed for use in general automotive body applica-
tions. These microcontrollers provide up to 32 kilo-
bytes of RAM, 512 kilobytes of flash memory, and
four kilobytes of EEPROM, with a core operating fre-
quency of 80 MHz. Flash memory is generally not
written except for software updates, so EEPROM holds

non-volatile application data. Buffering and storage for
authentication consume space in RAM, which is far
more expensive and scarce than flash memory in such
systems. Authentication mechanisms which require
large amounts of processing power or storage in RAM
may not be feasible. More powerful ECUs are imprac-
tical for most nodes in the system, and many nodes are
8-bit ECUs with significantly smaller memories due to
cost and power considerations.
 Small packet sizes - Packet sizes are small in em-
bedded network protocols when compared to those in
enterprise networks. Packets have maximum data pay-
load sizes as small as eight bytes in the case of CAN,
with the largest payloads for FlexRay and TTP being
254 bytes and 236 bytes respectively. Cost, signal in-
tegrity, and network node synchronization concerns
limit data rates to 1 Mbit/sec for CAN and 10 Mbit/sec
for TTP and FlexRay. Low-cost embedded networks
can be orders of magnitude slower than that. Authenti-
cation should incur minimal bandwidth overhead.
 Tolerance to packet loss - Distributed embedded
systems are subject to message blackouts from envi-
ronmental disturbances such as interference from large
electric motors. High quality cable shielding is often
impractical due to cost, size, and weight limits. As
such, authentication schemes must tolerate packet
losses as part of normal system operation.
 Real-time deadlines - In real-time systems, proc-
esses must complete within specified deadlines. Au-
thentication of nodes must occur within a known time
bound, with that bound being fast enough to match the
physical time constants of the system being controlled
(as fast as tens of milliseconds).

3. Multicast authentication with respect to
embedded constraints

The multicast nature of distributed embedded commu-
nications makes authentication particularly challeng-
ing. Point-to-point cryptographic mechanisms, such as
appending a MAC to a message using a single key
shared across all nodes, do not provide adequate au-
thentication. If more than two nodes share a key, any
node which holds that key can masquerade as a differ-
ent sender. For this reason, multicast authentication
requires some form of key asymmetry, so that no node
or group of colluding nodes can masquerade as another
node. Sections 3.1 and 3.2 discuss the use of a single
MAC per receiver and the limitations of this technique.
Our approach, described in Section 5, validates trun-
cated MACs over multiple messages.

3.1. One MAC per receiver

While typically avoided in enterprise networks where
hundreds of receivers can require kilobytes of authenti-
cation data per message, using one MAC per receiver

2

can seem attractive for a wired embedded network hav-
ing only tens of receivers. Sending one MAC per re-
ceiver is a simple extension of using shared secret
keys, where each sender establishes a unique shared
pair-wise key with every other node to provide asym-
metric key possession. These MACs can be computed
in milliseconds (or microseconds in hardware) for a
small number of receivers. For each transmitted mes-
sage, the sender appends a MAC for each distinct re-
ceiver. A receiver would know that a message with a
valid MAC could only have come from the sender,
because those two nodes uniquely share a secret key
(and the receiver knows it did not send the message).
 However, even for a small number of receivers, the
bandwidth overhead for full-size MACs makes this
approach infeasible for most embedded networks. The
total bit length of the MACs can be tens to hundreds of
times greater than the size of a single message. (Con-
sider a common situation in which a message reports
whether a switch is “on” or “off,” requiring a one-bit
data payload with perhaps thousands of bits of authen-
ticator information.) Data could only be sent rarely in
this scheme, because most bandwidth would be spent
on authentication. Moreover, message size constraints
would require fragmenting MACs across multiple mes-
sages, and packets in many protocols are not retrans-
mitted immediately if corrupted. If a packet containing
even a small part of a receiver's authenticator is lost,
the receiver would have to wait up to an entire set of
message rounds until a new value and authenticator is
broadcast. This delay may not be tolerable in a real-
time system.

3.2. Possible improvements

One possible improvement is to compute these MACs
over a set of several messages to amortize the band-
width cost over that set. The sending node broadcasts
each message in the set in its respective time slot. Once
the set of messages has been transmitted, the sender
computes the MACs over the set and in following time
slots broadcasts one MAC per receiver. While this am-
ortizes the overhead over many packets, it induces
even longer latency to authentication in the event that a
message value or authenticator is lost.
 Another possibility is to compute the set of MACs
once every nth time a message type is broadcast. This
improves loss tolerance since fewer packets contain
authenticators, and the bandwidth cost for authentica-
tion can be made arbitrarily small. Scheduling can be
simplified by taking turns sending authenticators for
different receivers (for example, sending only one re-
ceiver’s authenticator in turn with each message). But,
any single receiver must wait for up to n messages to
arrive to see one with an authenticator it knows how to
check. The receiver cannot determine whether the n-1

other messages are an attacker's forgeries or not. Addi-
tionally, if the nth packet or its authenticator is lost in
transmission, the receiver suffers a delay of another
full set of n messages and the authenticators.
 Schemes using one MAC per receiver are simple
and computationally fast, but the poor ratio of message
data to authentication data, and unacceptable delays
due to losses must be addressed. In this paper we dis-
cuss and improve upon an approach which solves these
issues by exploiting time-triggered communications.

4. Related Work
4.1. Existing multicast authentication schemes
Public key cryptography using digital signatures is
another asymmetric approach. While this could provide
strong source authentication, the processing overhead
makes it impractical for a resource constrained node to
compute digital signatures for real time control. Pagers
and Palm Pilots can take several seconds to compute a
512 bit RSA signature in resource constrained nodes
[4]. Several schemes suggest amortizing the cost of the
digital signature over several packets [18][21][25][30].
But, a node would have to amortize the cost over sev-
eral hundred messages for this to be effective.
 Schemes using one-time digital signatures [8][10]
[22] allow senders to sign messages much faster than
with traditional digital signatures by using one-way
hash functions, at the expense of increased message
sizes. Unfortunately, one-time digital signatures can
incur several kilobytes of authentication data per mes-
sage. This makes them impractical for embedded net-
works with small packet sizes and time-triggered
communication, even if amortized over many packets.
 Canetti et al. [5] suggest a scheme which appends k
one-bit MACs to each message, computed using k dif-
ferent keys. The keys are distributed amongst receivers
such that at least w receivers must conspire to forge a
message. While this is more efficient than using one
MAC per receiver, it is vulnerable to collusion by mul-
tiple nodes that together can masquerade as some other
node. Mitigating collusion can require hundreds or
thousands of authentication bits per message.
 TESLA [23] uses time-delayed release of keys to
provide asymmetry. By releasing keys at a pre-
specified interval after a MAC is released, receivers
can confirm the authenticity of the data from a sender.
The released keys are computed using one-way hash
chains, but require significant memory space. µTESLA
[24], a version of TESLA for resource constrained sen-
sor networks, limits the number of authenticated send-
ers and utilizes a base station for communications. A
base station is often cost-prohibitive for distributed
embedded real-time control systems, which use peer-
to-peer wired networks. An existing node, such as an
embedded gateway, might act as a base station, but

3

would be an undesirable single point of failure for the
entire network. A fully distributed approach is best.

4.2. Embedded network authentication

This work builds upon [28], which provides multicast
authentication on a per-packet basis in time-triggered
applications, using one truncated MAC per receiver for
wired networks.
 Other approaches such as SPINS [24] and TinySec
[13] apply security to resource constrained wireless
sensor networks. However, those approaches are spe-
cifically designed for use in wireless networks, which
have significantly different constraints. Secure aggre-
gation [12][26] focuses on aggregation of data from
multiple sensors in close geographic proximity rather
than time-triggered messages in temporal proximity.
 Morris and Koopman [19] identify the potential for
masquerade failures to cause accidental or malicious
failures, via non-critical nodes masquerading as higher
criticality nodes. They propose the use of counter-
measures of varying strengths to prevent masquerading
failures between nodes of varying criticality. Their
approach assumes non-malicious software faults or
attacks from a cryptologically unsophisticated attacker.
Fault tolerance mechanisms are not necessarily secure
against malicious masquerade or replay attacks. Mas-
querade prevention for safety-based systems typically
uses bus guardians or a symmetric key shared among
all trusted nodes. Compromise of a single node would
permit an attacker to masquerade as any system node.
 Wolf et al. [29] provide an overview of the security
vulnerabilities of various in-vehicle network protocols
including Local Interconnect Network (LIN), Media
Oriented System Transport (MOST), CAN, and
FlexRay. These vulnerabilities primarily focus upon
DoS attacks intended to disable networks. Addition-
ally, they state the need for confidentiality and authen-
tication. Wolf et al. suggest the use of digital signatures
or the asymmetric MAC scheme proposed in [5] for
authenticating sent packets along with gateways be-
tween individual in-vehicle networks. These authenti-
cation schemes may not be suitable for some distrib-
uted embedded networks, as discussed in Section 4.1.
 There have been several publications demonstrating
attacks on the authenticity of messages and nodes in
embedded networks. Nilsson and Larson [20] detail the
actions which an attacker might take, and demonstrate
masquerade attacks on CAN using simulation. Hoppe
et al. [11] and Lang et al. [17] demonstrate a combina-
tion of eavesdropping and replay attacks on CAN.
 Lastly, Chávez et al. [6] propose using RC4 encryp-
tion to provide confidentiality on CAN buses. They
dismiss authentication and non-repudiation as unneces-
sary in these networks, under the assumption that mes-
sage identifiers and error detection provide sufficient

confirmation of the sender's identity. Our work relaxes
this assumption by assuming that sender identity can
be forged, for example as discussed in [20].

5. Criticality-based authentication

Our approach provides multicast authentication on a
per-message basis in time-triggered applications, using
one truncated MAC of just a few bits per receiver. Au-
thentication of both state-changing messages and reac-
tive control messages is accomplished by validating
these truncated MACs across multiple packets. In time-
triggered applications, each node periodically broad-
casts the current state of each of its state variables and
sensor inputs to the rest of the network. Information is
often broadcast faster than the rate at which receivers
must act upon the data in their control loops, allowing
authentication of messages over a series of packets
containing consistent values. This faster rate also gives
the system a degree of resilience to unexpected operat-
ing situations and packet losses even with no authenti-
cation. This resilience to packet losses carries over to
our authentication approach, because all information
required to validate a single packet is self-contained.

5.1. Message types

We distinguish between two types of messages: state-
changing and reactive control. State-changing mes-
sages cause transitions within finite state machines in
the system design, or cause discrete, discontinuous
output changes in actuators. In our approach, to au-
thenticate state-changing messages nodes must receive
a predefined number of correctly authenticated packets
with consistent message values directing the state
change before executing the action. A set of state-
changing packets values are consistent if all data val-
ues are equal, or all are within a predefined range in
which each would trigger the same state-change.
 Our approach does not require the sender to trans-
mit extra messages. Instead, our approach takes advan-
tage of periodic transmissions of current state values,
enabling a tradeoff between application level latency,
per-packet authentication cost, and probability of in-
duced failures. The number of required packets and
authentication bits per packet depends upon the criti-
cality of the state change, as discussed later.
 Reactive control system messages cause updates to
continuous or ordered values in network nodes running
feedback control loops. These loops often contain a
low pass filter to actuator changes (implicit or explicit),
such as physical inertia. Again, a receiver performs
authentication over packets with consistent values.
Reactive control message values are consistent if they
pass standard validity or sanity checks (such as input
bounds checking), which is a less stringent criterion
than that for state-changing messages. Authenticating

4

each consistent message value allows the receiver to
perform per-message validation of messages. The sys-
tem will tolerate some small number of forged mes-
sages because of physical damping, requiring the at-
tacker to forge multiple messages before an unsafe
output can occur. So long as each reactive control mes-
sage contains enough authenticator bits, the probability
of successfully forging such a large set of messages
can be made sufficiently low. This enables a tradeoff
between per-packet authentication costs and probabil-
ity of induced failure.

5.2. Assumptions

This scheme relies upon several assumptions:
• Packets are transmitted at a rate fast enough for a

receiver to authenticate multiple consistent values
for a message type within system deadlines.

• Each sender has sufficient computational resources
to compute one MAC per receiver per packet that is
sent. The required computational resources depend
on the MAC function used.

• The number of bits in a packet's data payload is
greater than the number of receivers of a packet.
This allows authenticators for each receiver in the
packet, leaving room for the message value.

• Nodes use existing cryptographic one-way hash
functions, such as SHA-256, and MAC functions to
implement authentication ([27] includes examples).
We assume the underlying cryptographic primitives
are secure. We do not rely on specific MAC or one-
way hash functions to implement our scheme.

• A certification authority exists to assign key mate-
rial to components when they are manufactured.

• The network configuration is fixed; nodes are not
installed or uninstalled on the fly.

• Nodes remain synchronized to the nearest message
round.

5.3. Attacker model

We assume an attacker can gain access to the system
through a gateway connection to an external network,
malicious insider code, physical access to network
lines, or tampering with nodes. They may own the de-
vice being attacked. We consider an active attacker
model [27] in which an attacker may modify, inject,
drop, or eavesdrop upon network traffic.
 Attackers accessing the network through corrupted
nodes will have access to the key material in those
nodes. An attacker must not be able to masquerade as
any node they do not already control to perform a suc-
cessful attack, except by random chance.
 We will assume an attacker is aware of existing
error detection mechanisms along with the network
schedule, and is capable of injecting well-formed

packets in valid time slots. This constrains an attacker
to one forgery attempt per valid time slot in a TDMA
network such as TTP or FlexRay, since transmitters are
only permitted to transmit a single packet per time slot
in a time-triggered application. For the purpose of
analysis, we consider the worst case scenario in which
a successful attack depends solely on fooling a single
receiver. In practice, isolating receivers may be diffi-
cult if strong existing fault containment mechanisms
such as group membership are used.
 Additionally, we consider the effects of packets
containing invalid MACs (malicious and non-
malicious) which might disrupt authentication. We do
not consider full DoS attacks intended to prevent de-
livery of all network traffic, because as discussed by
Wolfe et al. [29], there are numerous existing vulner-
abilities in these networks to that type of attack, and
our scheme does not attempt to address these.

5.4. Authentication process
5.4.1. Key initialization and replay protection. Each
node is programmed with a public and private Diffie-
Hellman [7] key pair (digitally signed by a trusted cer-
tification authority, such as the manufacturer) and the
certification authority's public key. Upon installation or
replacement, each node uses these keys to establish a
shared secret key with each other node. Because of the
pair-wise shared keys, an attacker cannot masquerade
as any node other than the one compromised. All nodes
wired to the network are known at design time, and key
establishment costs are incurred once at installation.
 Replay protection is provided using a protocol for
securely synchronizing time or TDMA round number
between nodes such as the Secure Pair-wise Synchro-
nization protocol [9], once pair-wise keys are estab-
lished. This can provide synchronization on the order
of microseconds to ensure freshness of messages for
each message round, which can be tens to hundreds of
milliseconds. Global synchronization is not needed,
since only pairs of nodes share each secret key. We
include current time or TDMA round number along
with the secret key as inputs to a cryptographically
secure MAC function. Synchronized time values must
not roll over for some acceptably long period of time.
This prevents the attacker from predicting the MACs
over this period of time even for identical data values.
5.4.2. Run-time message generation. When a node
sends a packet, it computes a MAC for each distinct
receiving node in the network over the message value,
packet header, and the current time using the pair-wise
shared secret key. Each MAC is truncated down to just
a few bits, and appended to the message value. By only
using a few bits, one MAC per receiver can be placed
in a single packet, as illustrated in Figure 1. The size of
each truncated MAC could be as little as one bit per

5

Figure 1. Example packet containing 32 bits of data
and four 8-bit MACs, for four receivers.

MAC. All authentication for each packet is fully con-
tained within the data payload of that packet, allowing
each packet to be verified independently.

5.4.3. State-changing message verification. A re-
ceiver authenticates state-changing messages by au-
thenticating a set of packets. The node keeps an au-
thentication history buffer for each message type used.
Each packet is authenticated individually when re-
ceived, and the receiver stores the results (“valid” or
“invalid”) for the n most recent packets in the history
buffer. A receiver considers a packet to be valid if it
contains correct authentication and error detection
fields. It is invalid if the error detection field is correct
and the authentication field is incorrect. Any packets
containing an incorrect error detection field are invalid,
and are omitted from the history buffer.
 The state change occurs when at least k out of the
past n time-triggered packets have consistent values
and are valid. Assume that each packet contains b au-
thentication bits per receiver. State changes occur as
soon as the kth packet with a consistent message value
has been validated. While it is likely that an attacker
will be able to forge a single packet since we use just a
few authentication bits per MAC, it is unlikely that
they will be able to forge so many within the history of
the buffer as to cause a successful masquerade attack.
An attacker can successfully forge at least k of a set n
packets with a binomial probability of:

(2) (1 2)
n

b i b n i
A

i k

n
P

i
− − −

=

= −

∑ (1)

 Allowing state changes to occur after validating a
subset of MACs in the history buffer grants this ap-
proach a degree of tolerance to interspersed invalid
MACs. Without this tolerance, an attacker can increase
message latency or prevent authentication altogether
while remaining undetected by occasionally injecting
invalid packets. Packets with a correct CRC but invalid
MAC might also be caused by non-malicious faults.
For example, if the sender's and receiver's notions of
time differ due to a temporary internal fault, the re-
ceiver would see an invalid MAC. Additionally, some
message corruptions might be missed by error detec-
tion mechanisms, so occasional invalid MACs might
result from transmission errors.
 In applications which do not require tolerance to

invalid MACs or require a very low probability of suc-
cessful attack, the receiver waits for a set of consecu-
tively validated MACs. In this case, k is equal to n. The
probability of forging n consecutive packets is:

2 nb
AP −= (2)

 This approach for authenticating state-changing
messages enables the system designer to perform a
tradeoff among per-packet authentication cost, applica-
tion level latency, tolerance to invalid MACs and prob-
ability of an induced failure. Based upon the criticality
of the message, the designer trades increased band-
width and latency for lower probability of failure, and
trades increased tolerance to invalid MACs for in-
creased risk of induced failure. Additionally, there is a
limit on the number of required packets, based upon
the maximum tolerated latency for authentication, how
many packets are expected to contain consistent mes-
sage values (depending upon network speed), and the
bandwidth available for authentication bits in packets.

5.4.4. Reactive control message verification. Unlike
state-changing message verification, nodes running
feedback control loops authenticate each message
packet as it arrives. Each authenticated message causes
an immediate change in actuator outputs. Packets con-
taining detected transmission errors or incorrect MACs
are discarded without updating outputs. An actuator
might cause an unsafe situation if it accepts too many
successfully forged message values commanding it to
an unsafe position within a time period, even if it re-
ceives valid message values within that period. We
consider the case where at least k messages must be
successfully forged out of the n most recently received
messages to force the system to an unsafe state. Values
for n and k depend on the characteristics of the system.
More complex control systems in which messages
cause varying amounts of actuation depending upon
their value and exact timing require further analysis
and are beyond the scope of this paper.
 For reactive control messages, the receiver does not
explicitly retain an authentication history buffer in
memory, but relies instead upon a damped response to
messages. In order to successfully attack the system, an
attacker must individually forge at least k out of the n
most recent messages sent to the receiver. This gives
the probability of a successful undetected attack in
equation (1). For actuators which require a set of n
consecutive messages to reach an unsafe output, equa-
tion (2) describes the probability of a successful attack.
 This approach also supports trading increased per
packet authentication cost for reduced probability of
induced system failure. The designer selects the num-
ber of bits per packet b based upon the amount of
physical change produced per message, such that the

6

probability of system failure is considered acceptable.

5.4.5. Tolerance to packet loss. If a single packet is
lost or corrupted due to an error during transmission,
the receiver simply ignores that packet. Ignored pack-
ets do not disrupt authentication because receivers au-
thenticate each packet individually based on data is
fully contained within that packet.

6. Analysis
In this section we discuss characteristics of our ap-
proach and experimental results of simulated attacks.
Per our attack model, an attacker may insert or modify
packets in valid time slots for a particular message
type. Computing the MAC over the pair-wise synchro-
nized time or TDMA round number ensures freshness
of messages. At best, an attacker may only insert a
packet with a randomly generated MAC once per valid
time slot. To be conservative in our analysis, the at-
tacker performs masquerade attempts against a single
isolated receiver, so an attacker only needs to guess
one truncated MAC per packet.
 We have experimentally confirmed the probability
of successful forgery attacks against our approach us-
ing a software simulation written in C. In our simula-
tion, an attacker node continually sends packets con-
taining a known message value and randomly gener-
ated MAC values to the receiver. The receiver node
verifies the packet using HMAC-SHA-256 and retains
a history buffer of the n most recent authentication
results. Once the receiver counts a sufficient number of
valid MACs in its history buffer, the simulator records
an attack event and the number of attempted forgeries
before the successful attack occurred.
 We simulated attacks on state-changing and reactive
control messages for both authentication of consecu-
tive packets and authentication of a fraction of packets
in a history buffer. Attacks on state-changing messages
were considered to be successful once the attacker
forced a state change, and further packet forgeries were
applied to the next state change after clearing the his-
tory buffer. For reactive control messages, successful
attack events were recorded as long as the most recent
packets contained a sufficient number of valid MACs,
regardless of authentication history.
 We measured the number of successful attack
events over a period of time long enough to record at
least one hundred successful attack events per data
point. We computed the successful attack rate as aver-
age successful attack events per message round and
compared this rate to the probability of successful at-
tack defined in equations (1) and (2) in Section 5.4.3.
From our results we confirmed that equations (1) and
(2) can be used as upper bounds on the probability of
successful attacks on our approach. These equations
predict the required number of packets and authentica-

tion bits per packet to achieve a desired failure rate and
tolerance to invalid MACs for the system.

6.1. Authenticating consecutive packets

Figure 2 shows the simulated successful attack rate on
both state-changing and reactive control message
types, using a fixed history buffer size of four packets
containing one to six authentication bits per packet. As
more bandwidth is devoted to authentication, the suc-
cessful attack rate decreases exponentially.

Authentication bits per packet

1 2 3 4 5 6
A

ve
ra

ge
 a

tta
ck

 e
ve

nt
s

pe
r

m
es

sa
ge

 r
ou

nd

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Reactive Control;
Simulation and Equ. 2
State-changing

Figure 2. Simulated successful attack rates for four

consecutive messages.

 The successful attack rates in Figure 2 should be no
greater than the probability of successful attack defined
by equation (2). As expected, the successful attack rate
for reactive control messages matches equation (2)
since simulated attacks were counted regardless of
previous authentication history. (Equation (2) is indis-
tinguishable from the simulated reactive control suc-
cessful attack rate if plotted on Figure 2.)
 The successful attack rate for state-changing mes-
sages is less than the rate for reactive control messages
because successful attacks are likely to come in bursts
of consecutive reactive control messages containing
few authentication bits. A forgery attempt on the
packet after an initial attack event has a better probabil-
ity of prolonging the attack in comparison to forging a
full set of n packets to initiate a successful attack. The
simulated successful attack rate for state-changing
messages is approximately a factor of (1-2-b) less than
the rate for reactive control messages, because we as-
sume the history buffer is flushed after a state change.
 With more bits per packet, the likelihood of suc-
cessful attacks occurring on successive reactive control
messages decreases, as indicated by the converging
rates in Figure 2. Thus, we can use equation (2) as a
conservative upper bound on the successful attack rate
for both reactive control and state-changing messages.
 Typical requirements for acceptable failure rates in
systems containing wired embedded networks might be
defined at 10-3/hr, 10-6/hr, or 10-9/hr of undetected mes-

7

Authentication bits per packet
2 4 6 8 10 12 14 16

H
is

to
ry

 b
uf

fe
r

si
ze

 (
pa

ck
et

s)

0

5

10

15

20

25

30

10-3/hr

10-6/hr

10-9/hr

Figure 3. Minimum authentication bits per packet
and history buffer size required to authenticate to

failure rates at 1000 packets per second.

sage errors depending on the severity of the failure. An
induced failure from a masquerade attack should occur
no more often than the required rate of failure. Figure 3
shows the minimum number of messages in the history
buffer for a given number of authentication bits per
message to achieve an expected successful attack rate
of 10-3/hr, 10-6/hr, or 10-9/hr. The number of packets
and bits were obtained using the three successful attack
rates as expected values for one forgery attempt per
millisecond over the course of an hour, each succeed-
ing with probability given by equation (2).

6.2. Authenticating nonconsecutive packets

If we permit interspersed invalid MACs in the authen-
tication history buffer, we gain tolerance to some non-
malicious faults and malicious attempts to disrupt au-
thentication of state-changing messages. But increasing
this tolerance also increases the probability of an in-
duced failure. Attacks may succeed against some con-
trol systems if the attacker forges some fraction of the
most recent reactive control messages. As this fraction
decreases, the probability of induced failure increases.
 Figure 4 shows the simulated successful attack rate
on state-changing and reactive control message types
requiring two successful forgeries out of four packets,
each containing one through six authentication bits. As
the number of bits per packet for authentication in-
creases, the probability of a successful attack decreases
exponentially.
 The successful attack rate on reactive control mes-
sages in Figure 4 matches equation (1) because attack
events were counted regardless of previous authentica-
tion history. (Equation (1) is indistinguishable from the
Figures 4 and 5.) The successful attack rate for reactive
control messages is greater than that for state-changing
messages because successful attacks on reactive con-
trol messages can persist as long as the most recent n

Authentication bits per packet

1 2 3 4 5 6

A
ve

ra
ge

 a
tta

ck
 e

ve
nt

s

pe
r

m
es

sa
ge

 r
ou

nd

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Reactive Control;

Simulation and Equ. 1
State-changing

Figure 4. Simulated successful attack rate for two

out of four messages.

packets contain k valid MACs. The difference between
lines in Figure 4 is greater than the difference between
lines in Figure 2 because there are multiple combina-
tions of successful forgeries in the most recent packets
which can cause successful attacks to persist. We do
not attempt to provide an equation due to the complex-
ity of the combinations. Rather, we use equation (1) as
conservative upper bound for both message types.

Valid packets (out of eight)

2 4 6 8

A
ve

ra
ge

 a
tt

ac
k

ev
en

ts

pe
r

m
es

sa
ge

 r
ou

nd

10-5

10-4

10-3

10-2

10-1

100

Reactive Control;

Simulation and Equ. 1
State-changing

Figure 5. Simulated successful attack rates for a

history buffer of eight packets with two authentica-
tion bits each.

 Figure 5 illustrates how the difference between
simulated successful attack rates for reactive control
and state-changing messages changes as the number of
required successful forgeries is varied for a buffer of
eight packets each containing two authentication bits.
With a lower fraction of required valid packets, there
are more possible combinations which can cause a suc-
cessful attack to persist for reactive control message
types, causing a greater successful attack rate.
 Figure 6 illustrates tradeoffs between history buffer
size and authentication bits per packet needed for ex-
pected successful attack rates of 10-3/hr, 10-6/hr, or
10-9/hr, requiring all but two valid MACs. The number
of packets and bits were obtained using the three suc-

8

Authentication bits per packet
2 4 6 8 10 12 14 16

H
is

to
ry

 b
uf

fe
r

si
ze

 (
pa

ck
et

s)

0

5

10

15

20

25

30

10-3/hr

10-6/hr

10-9/hr

Figure 6. Minimum authentication bits per message
and history buffer size required to authenticate to
failure rates at 1000 messages per second given

two invalid packets in the buffer.

cessful attack rates as expected values for one forgery
attempt per millisecond over the course of an hour,
each succeeding with probability of equation (1). For
example, with four authentication bits per message, if
all packets in a history buffer must be valid, the history
buffer must include at least the last ten packets to au-
thenticate to 10-6/hr (Figure 3). If all but two packets
must be forged in the history buffer, then the history
buffer must include the past thirteen packets (Figure 6).

6.3. Limitations

The rate of successful attacks via brute force guessing
will be higher than an approach which authenticates an
entire frame of packets all at once with one MAC (as-
suming number of total authentication bits is equal).
Consider the case where n consecutive packets each
containing b authentication bits are required to authen-
ticate a state change. In our approach, the attacker has
a probability of 2-nb of successfully attack per attempt,
where each attempt requires a single new packet. Next,
consider the case where the same frame of n packets
(causing the exact same effect) is authenticated all at
once using a single MAC containing nb bits. The at-
tacker has a probability of success of 2-nb per attempt,
however each attempt now requires sending all n pack-
ets every time. Thus, on a per-packet basis, attack
events are expected to occur n times more frequently
when using our approach compared to a single frame.
 This limitation can be addressed in several ways.
First, the system designer can add logic in a receiver to
detect a large number of invalid packets as an intrusion
attempt. During a brute force guessing attack, the re-
ceiver will get many invalid packets before a success-
ful attack is likely. Second, this factor can be reduced
by using a smaller buffer size. Finally, our approach
can be slightly modified so the receiver waits for a full
set of n packets to arrive before committing to an ac-

tion. The receiver authenticates all n packets at once,
then clears its history buffer. If the receiver gets too
many invalid packets within one history buffer, it sim-
ply waits until n packets have been received before
clearing the history buffer and listening for a new set
of packets. This takes advantage of the loss tolerance
of our approach with a worst case latency increase of n
messages rounds. This technique extends to allowing
invalid MACs by having the receiver reset its history
buffer only after receiving all n packets regardless of
whether enough of them contained valid MACs.
 Additionally, in our simplified model of reactive
control systems an attack may continue with relatively
high probability once it has successfully started as dis-
cussed in Section 6.1. To prevent this, each packet
must incorporate enough bits to keep the probability of
individual message forgery at an acceptable level. As
this implicit history buffer becomes longer with fewer
authentication bits per packet, the probability of pro-
longed attack increases. This can be mitigated by using
more bits per packet.
 Our approach has additional limitations. Each mes-
sage requires the computation of one MAC per re-
ceiver. Hardware support for cryptographic computa-
tions is desirable and might be incorporated directly as
part of hardware support for the communications pro-
tocol. This suggests a research opportunity for fast,
inexpensive MAC functions producing small outputs.
 A scalability limit is that the number of authentica-
tion bits per packet grows linearly with the number of
receivers. This might be mitigated by omitting MACs
for receivers that don’t need to use the value of a par-
ticular message.
 Our method assumes time-triggered applications. It
relies on the periodic broadcasts of current values of
state variables, and the limitation of one packet per
TDMA slot. Other approaches are needed for event-
triggered networks to provide strong authentication for
each event. Our system provides advantage to the de-
gree that messages are transmitting over-sampled data.
 Lastly, our approach does not tolerate complete
DoS attacks. Allowing intermittent invalid packets
within a history buffer is a useful technique for tolerat-
ing stealthy attacks or non-malicious faults. But if an
attacker floods a network with invalid packets, a re-
ceiver must assume that the network has suffered a
permanent failure and take appropriate action.

7. Conclusions

In this paper we build upon an approach to authenticate
time-triggered communications by validating truncated
MACs across multiple packets. Our approach enables
per-message authentication of reactive control mes-
sages and delayed authentication of state changes at a
slight increase in the probability of induced failures

9

(when compared to using a single strong MAC). We
tolerate occasional packets with invalid MACs inter-
spersed with valid MACs, consider cases where forg-
ing nonconsecutive reactive control messages leads to
successful attacks, and provide a conservative upper
bound on the probability of successful attack. This
approach enables a tradeoff among per-packet authen-
tication cost, application level latency, tolerance to
invalid MACs and probability of induced failures to
provide flexibility for system designers.

8. Acknowledgements

This research was funded in part by General Motors
through the GM-Carnegie Mellon Vehicular Informa-
tion Technology Collaborative Research Lab.

9. References
[1] FlexRay Consortium. FlexRay Communications System

Protocol Specification, Version 2.1, Rev. A, Dec. 2005.
[2] Freescale Semiconductor. S12XD Product Summary

Page. Accessed Dec. 2008 at http://www.freescale.com/.
[3] R. Bosch GmbH, CAN Specification, Ver. 2, Sep. 1991.
[4] M. Brown, D. Cheung, D. Hankerson, J. L. Hernandez,

M. Kirkup, and A. Menezes. PGP in constrained wireless
devices. In SSYM’00: Proc. of the 9th Conf. on USENIX
Security Symposium, pp. 19–34, 2000.

[5] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor,
and B. Pinkas. Multicast security: a taxonomy and some
efficient constructions. In INFOCOM ’99: Proc. 18th An-
nual Joint Conf. of the IEEE Computer and Communica-
tions Societies, vol. 2, pp. 708–716. IEEE, 1999.

[6] M. Chavez, C. Rosete, and F. Henriquez. Achieving
Confidentiality Security Service for CAN. In CONIELE-
COMP ’05: Proc. of the 15th Int’l Conf. on Electronics,
Communications and Computers, pp. 166–170, 2005.

[7] W. Diffie and M. Hellman. New directions in cryptogra-
phy. IEEE Transactions on Information Theory, vol. 22,
pp. 644-654, 1976.

[8] S. Even, O. Goldreich, and S. Micali. On-line/off-line
digital signatures. In CRYPTO ’89: Proc. on Advances in
Cryptology, pp. 263–275. Springer-Verlag, 1989.

[9] S. Ganeriwal, S. Čapkun, C.-C. Han, and M. B.
Srivastava. Secure time synchronization service for sensor
networks. In WiSe ’05: Proc. of the 4th ACM Workshop
on Wireless Security, pp. 97–106. ACM, 2005.

[10] R. Gennaro and P. Rohatgi. How to Sign Digital
Streams. In CRYPTO ’97: Proc. of the 17th Annual Int’l
Cryptology Conf. on Advances in Cryptology, pp. 180–
197. Springer-Verlag, 1997.

[11] T. Hoppe and J. Dittman. Sniffing/Replay Attacks on
CAN Buses: A simulated attack on the electric window
lift classified using an adapted CERT taxonomy. In 2nd
Workshop on Embedded Systems Security (WESS), 2007.

[12] L. Hu and D. Evans. Secure Aggregation for Wireless
Networks. In Proc. of the 2003 Symp. on Applications and
the Internet Workshops, pp. 384–394. IEEE, 2003.

[13] C. Karlof, N. Sastry, and D. Wagner. TinySec: a link
layer security architecture for wireless sensor networks. In

SenSys ’04: Proc. of the 2nd Int’l Conf. on Embedded
Networked Sensor Systems, pp. 162–175. ACM, 2004.

[14] P. Koopman, J. Morris, and P. Narasimhan. Challenges
in Deeply Networked System Survivability. NATO Ad-
vanced Research Workshop on Security and Embedded
Systems, pp. 57–64, 2005.

[15] H. Kopetz. Real-Time Systems: Design Principles for
Distributed Embedded Applications. Kluwer Academic
Publishers, Norwell, MA, USA, 1997.

[16] H. Kopetz and G. Grunsteidl. TTP - A time-triggered
protocol for fault-tolerant real-time systems. In Proc. of
the 23rd Int’l Symposium on Fault-Tolerant Computing,
pp. 524–533, 1993.

[17] A. Lang, J. Dittman, S. Kiltz, and T. Hoppe. Future
Perspectives: The car and its IP address - A potential
safety and security risk assessment. In Proc. of the 26th
Int’l Conf. on Computer Safety, Reliability and Security
(SAFECOMP), pp. 40-53. Springer-Verlag, 2007.

[18] S. Miner and J. Staddon. Graph-Based Authentication of
Digital Streams. In SP ’01: Proc. of the 2001 IEEE Symp.
on Security and Privacy, pp. 232–246.

[19] J. Morris and P. Koopman. Critical Message Integrity
Over A Shared Network. 5th IFAC Int’l Conf. on Fieldbus
Systems and their Applications, pp. 145-151, 2003.

[20] D. Nilsson and U. Larson. Simulated Attacks on CAN
Buses: Vehicle Virus. 5th IASTED Asian Conf. on Com-
munication Systems and Networks, 2008.

[21] J. M. Park, E. K. P. Chong, and H. J. Siegel. Efficient
Multicast Packet Authentication Using Signature Amorti-
zation. In SP ’02: Proc. of the 2002 IEEE Symposium on
Security and Privacy, pp. 227–240. IEEE, 2002.

[22] A. Perrig. The BiBa one-time signature and broadcast
authentication protocol. In CCS ’01: 8th ACM Conf. on
Computer and Comm. Security, pp. 28–37, 2001.

[23] A. Perrig, R. Canetti, J. Tygar, and D. Song. The
TESLA Broadcast Authentication Protocol. RSA Cryp-
toBytes, vol. 5, pp. 2-13, 2002.

[24] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E.
Culler. SPINS: security protocols for sensor networks.
Wireless Networks, vol. 8(no. 5):pp. 521–534, 2002.

[25] A. Perrig, J. D. Tygar, D. Song, and R. Canetti. Efficient
Authentication and Signing of Multicast Streams over
Lossy Channels. In SP ’00: Proc. of the 2000 IEEE Sym-
posium on Security and Privacy, pp. 56–73, 2000.

[26] M. Raya, A. Aziz, & J. Hubaux. Efficient secure ag-
gregation in VANETs. In VANET ’06: 3rd Int’l Workshop
on Vehicular Ad Hoc Networks, pp. 67–75. ACM, 2006.

[27] Schneier. Applied Cryptography (2nd ed.): Protocols,
Algorithms, and Source Code in C. John Wiley & Sons,
Inc., New York, NY, USA, 1995.

[28] C. Szilagyi and P. Koopman. A flexible approach to
embedded network multicast authentication. In 2nd Work-
shop on Embedded Systems Security (WESS), 2008.

[29] M. Wolf, A. Weimerskirch, and C. Paar. Security in
Automotive Bus Systems. Workshop on Embedded Secu-
rity in Cars, 2004.

[30] C. K. Wong and S. S. Lam. Digital Signatures for Flows
and Multicasts. In ICNP ’98: Proc. of the 6th Int’l Conf.
on Network Protocols, pp. 198–209. IEEE, 1998.

10

